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Abstract: Supply chains are increasingly exposed to volatility, uncertainty, complexity,
and ambiguity, rendering traditional reactive planning approaches inadequate for
sustaining operational performance and resilience. While intelligent automation has been
widely promoted as a transformative force in supply chain management, empirical
evidence explaining how it enables a shift from reactive to proactive planning remains
fragmented. This study addresses this gap by developing and testing a simulation-based
primary research model that examines the performance implications of intelligent
automation enabled proactive supply chain planning. Drawing on dynamic capabilities
theory and resilience perspectives, the study constructs a scenario-based simulation
framework comparing reactive planning systems with proactive planning architectures
supported by predictive analytics, machine learning driven forecasting, and automated
decision execution. Primary data are generated through repeated simulation runs under
varying demand volatility and disruption scenarios. The results demonstrate that
proactive planning systems consistently outperform reactive counterparts in terms of
forecasting accuracy, lead-time stability, and disruption recovery speed. The findings
further indicate that intelligent automation enhances sensing, seizing, and reconfiguring
capabilities, enabling anticipatory decision-making rather than ex post corrective actions.
By providing simulation-based evidence, this study contributes to supply chain theory
by clarifying the mechanisms through which intelligent automation drives proactive
planning and resilience. From a managerial perspective, the results offer actionable
insights into sequencing automation investments and aligning digital capabilities with
planning processes. The study advances the literature by positioning intelligent
automation not merely as an efficiency tool, but as a strategic enabler of proactive and
adaptive supply chain planning.
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1. Introduction

Global supply chains are operating in an environment characterized by persistent volatility, heightened
uncertainty, structural complexity, and frequent disruptions. Demand shocks, geopolitical instability, climate-
induced events, and rapid technological change have collectively exposed the limitations of conventional supply
chain planning approaches. Many organizations continue to rely on reactive planning systems that respond to
deviations only after disruptions materialize, often resulting in delayed decisions, cost escalation, and reduced
service levels (Ahmed et al., 2017). The COVID-19 pandemic, semiconductor shortages, and logistics bottlenecks
have further demonstrated that ex post corrective actions are insufficient for maintaining performance in highly

turbulent environments (Ivanov, 2020; Queiroz et al., 2022).

Reactive supply chain planning is largely built on historical data, periodic forecasting cycles, and manual
decision adjustments. While such systems may perform adequately in stable conditions, they lack the capability
to anticipate emerging risks or adapt dynamically to rapid environmental changes. As a result, reactive planning
often amplifies variability across the supply chain, leading to phenomena such as demand distortion, excessive
safety stock, and prolonged recovery times following disruptions (Choi et al., 2020). These limitations have
prompted scholars and practitioners to call for a fundamental shift toward proactive planning paradigms that

emphasize anticipation, early warning, and continuous reconfiguration of planning decisions.

Advances associated with Industry 4.0 have created new opportunities to enable this transition. Intelligent
automation, encompassing predictive analytics, machine learning, and automated execution mechanisms,
allows supply chains to process large volumes of real-time data and generate forward-looking insights. Unlike
traditional automation, which focuses primarily on efficiency and task substitution, intelligent automation
supports cognitive functions such as pattern recognition, prediction, and adaptive decision-making (Wamba et
al., 2017; Frank et al., 2019). These capabilities are particularly relevant for supply chain planning, where timely

anticipation of demand shifts and disruptions is critical for sustaining performance and resilience.

Despite growing interest in intelligent automation, existing research remains fragmented in two important ways.
First, much of the literature treats intelligent automation as a set of isolated technologies rather than as an
integrated planning capability. Studies often examine predictive analytics, machine learning, or automation
tools independently, without explaining how they jointly enable a proactive planning logic (Bag et al., 2022).
Second, empirical evidence demonstrating the causal performance implications of proactive planning remains
limited. Survey-based studies dominate the field, relying heavily on perceptual measures and cross-sectional
data, which constrain causal inference and obscure dynamic system behavior under disruption scenarios (Jum'a
et al., 2021). In response to these limitations, this study adopts a simulation-based primary research approach to
examine how intelligent automation enables the transition from reactive to proactive supply chain planning.
Simulation modeling is particularly suitable for this purpose because it allows systematic comparison of
alternative planning architectures under controlled yet realistic conditions, including varying demand volatility
and disruption intensity (Ivanov & Dolgui, 2020). By generating primary data through repeated simulation
runs, the study avoids common biases associated with perceptual data and enables direct observation of

performance dynamics over time.
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The study is theoretically grounded in dynamic capabilities theory, which emphasizes an organization’s ability
to sense changes, seize opportunities, and reconfigure resources in response to environmental turbulence (Teece,
2007). Proactive supply chain planning is conceptualized as a manifestation of dynamic capabilities, supported
by intelligent automation that enhances sensing through predictive analytics, seizing through anticipatory
decision rules, and reconfiguring through automated execution. In addition, resilience theory provides a
complementary lens for assessing the capacity of proactive planning systems to absorb shocks and recover

rapidly from disruptions (Ponomarov & Holcomb, 2009).

The objective of this study is threefold. First, it seeks to conceptualize proactive supply chain planning as a
capability enabled by intelligent automation rather than as a standalone technological upgrade. Second, it aims
to empirically compare reactive and proactive planning systems using a simulation-based framework that
generates primary performance data. Third, it examines the implications of intelligent automation for
forecasting accuracy, lead-time stability, and disruption recovery, thereby contributing to both supply chain

theory and managerial practice.

The remainder of the paper is structured as follows. The next section synthesizes the relevant theoretical and
empirical literature on supply chain planning paradigms, intelligent automation, and dynamic capabilities. This
is followed by the development of the simulation framework and research methodology. The results section
presents comparative performance outcomes between reactive and proactive planning systems. The discussion
interprets these findings in light of dynamic capabilities and resilience perspectives, before concluding with

managerial implications, limitations, and directions for future research.
2. Literature Review and Theoretical Foundations
2.1 Evolution of Supply Chain Planning: From Reactive to Proactive

Supply chain planning has traditionally been grounded in deterministic and forecast-driven models that assume
relative environmental stability. Early planning systems emphasized efficiency through batch processing,
periodic demand forecasting, and manual coordination across functional silos. These approaches, often
described as reactive, are characterized by their reliance on historical data and their focus on correcting
deviations after they occur (Stadtler, 2005). While such systems may function adequately under predictable
conditions, they are increasingly misaligned with contemporary supply chain environments marked by high

volatility and frequent disruptions.

The limitations of reactive planning have been widely documented. Empirical and analytical studies show that
delayed responses to demand fluctuations and supply disruptions exacerbate variability, increase inventory
buffers, and prolong recovery times (Tang, 2006; Choi et al., 2020). Reactive systems also tend to suffer from
limited visibility and weak coordination across supply chain partners, further constraining their ability to
respond effectively to unexpected events. As supply chains have become more global and interconnected, these
weaknesses have become more pronounced, prompting calls for more anticipatory and adaptive planning

approaches.
Proactive supply chain planning represents a fundamental departure from this traditional logic. Rather than
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reacting to realized deviations, proactive systems emphasize anticipation, early warning, and continuous
adjustment of planning decisions. This paradigm relies on forward-looking information, real-time data
integration, and dynamic reconfiguration of resources to mitigate risks before they escalate into major
disruptions (Ivanov, 2020). Proactive planning is therefore not merely an incremental improvement over
reactive approaches but a qualitatively different mode of decision-making that prioritizes preparedness and

adaptability.
2.2 Intelligent Automation in Supply Chain Planning

The shift toward proactive planning has been enabled in large part by advances in intelligent automation.
Intelligent automation extends beyond conventional automation by incorporating cognitive capabilities such as
learning, prediction, and autonomous decision execution. In the supply chain context, intelligent automation
typically encompasses predictive analytics, machine learning algorithms, and automated process execution

mechanisms that operate across planning horizons (Wamba et al., 2017).

Predictive analytics plays a central role by transforming large volumes of structured and unstructured data into
forward-looking insights. Machine learning techniques, in particular, have demonstrated superior performance
in capturing nonlinear demand patterns and detecting early signals of disruption compared to traditional
statistical forecasting models (Carbonneau et al., 2008; Baryannis et al., 2019). When embedded within planning
systems, these capabilities enable continuous updating of forecasts and scenario evaluations, thereby supporting

anticipatory decision-making.

Automated execution mechanisms further differentiate intelligent automation from earlier forms of
digitalization. Robotic process automation and rule-based decision engines allow planning adjustments to be
implemented rapidly and consistently once predefined thresholds or predictive signals are triggered. This
reduces reliance on manual interventions, shortens response times, and enhances coordination across functions
(Syed et al., 2020). Importantly, the value of intelligent automation lies not in any single technology but in the

integration of predictive, analytical, and execution capabilities into a coherent planning architecture.

Despite growing adoption, the literature reveals a tendency to examine intelligent automation in a fragmented
manner. Many studies focus on isolated applications such as demand forecasting or inventory optimization
without addressing how these tools collectively enable a proactive planning logic (Aloysius et al., 2018). As a
result, the mechanisms linking intelligent automation to sustained planning performance remain under-

theorized.
2.3 Dynamic Capabilities as a Theoretical Lens

Dynamic capabilities theory provides a useful framework for understanding how intelligent automation
supports proactive supply chain planning. The theory posits that organizational performance in turbulent
environments depends on the ability to sense changes, seize opportunities, and reconfigure resources
accordingly (Teece, 2007; Banerjee et al., 2016). These capabilities are particularly relevant for supply chain

planning, where timely recognition of emerging risks and rapid reallocation of resources are critical.

Proactive planning can be interpreted as an operational manifestation of dynamic capabilities. Sensing is
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enhanced through predictive analytics and real-time data integration, which allow organizations to detect early
signals of demand shifts or supply disruptions. Seizing involves translating these signals into anticipatory
planning decisions, such as adjusting production schedules or reallocating inventory. Reconfiguring is enabled

through automated execution mechanisms that implement changes across the supply chain with minimal delay.

Prior research has applied dynamic capabilities theory to supply chain management, highlighting the role of
digital technologies in enhancing adaptability and responsiveness (Teece et al., 2016; Jum'a et al., 2021).
However, empirical evidence demonstrating how these capabilities translate into measurable planning
performance remains limited. In particular, few studies explicitly compare reactive and proactive planning

systems through the lens of dynamic capabilities.
2.4 Supply Chain Resilience and Planning Performance

Resilience theory complements the dynamic capabilities perspective by focusing on a supply chain’s ability to
absorb shocks, adapt to disturbances, and recover to a stable state (Ponomarov & Holcomb, 2009). Planning
systems play a central role in shaping resilience outcomes, as they influence both the speed and effectiveness of
response to disruptions. Reactive planning often results in delayed recovery and higher performance losses,

whereas proactive planning can mitigate impacts by enabling preemptive actions (Ivanov & Dolgui, 2020).

The integration of intelligent automation into planning processes has been identified as a key enabler of
resilience. Real-time visibility and predictive capabilities allow organizations to anticipate disruptions and
activate contingency plans before disruptions fully materialize (Chowdhury & Quaddus, 2017). However,
empirical studies linking intelligent automation, proactive planning, and resilience outcomes remain sparse,

particularly those employing methods capable of capturing dynamic system behavior.
2.5 Synthesis and Research Gap

The reviewed literature highlights a growing recognition of the limitations of reactive supply chain planning
and the potential of intelligent automation to enable more proactive approaches. However, three critical gaps
remain. First, existing studies often treat intelligent automation as a collection of discrete tools rather than as an
integrated planning capability. Second, much of the empirical evidence is based on perceptual data, limiting
insights into causal mechanisms and dynamic performance effects. Third, few studies explicitly ground

proactive planning in established theoretical frameworks such as dynamic capabilities and resilience.

To address these gaps, the present study develops a simulation-based primary research framework that
systematically compares reactive and intelligent automation—enabled proactive planning systems. By grounding
the analysis in dynamic capabilities theory and resilience perspectives, and by generating primary performance
data through simulation, the study seeks to advance understanding of how intelligent automation enables

proactive supply chain planning and improves performance under volatile conditions.
3. Conceptual Model and Simulation Framework
3.1. Reactive and Proactive Supply Chain Planning Logics

Supply chain planning systems differ fundamentally in how they process information and trigger decisions.
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Reactive planning systems are designed to respond to deviations only after they are observed. Decisions are
typically based on historical demand patterns, periodic forecasting cycles, and predefined planning horizons.
When disruptions or demand shocks occur, corrective actions are initiated ex post, often through manual
interventions or delayed system updates. This logic constrains the ability of organizations to anticipate emerging

risks and amplifies variability across the supply chain, particularly under high uncertainty.

In contrast, proactive supply chain planning is grounded in continuous monitoring, forward-looking analysis,
and anticipatory decision-making. Proactive systems integrate real-time and near-real-time data from multiple
sources, enabling early detection of weak signals related to demand shifts, supply disruptions, or capacity
constraints. Rather than waiting for deviations to materialize, proactive planning systems adjust forecasts,
production plans, and inventory allocations in advance, thereby mitigating potential performance losses. The
distinction between reactive and proactive planning therefore lies not only in timing but also in the underlying

decision logic and information-processing capabilities.
3.2. Intelligent Automation as an Enabling Capability

Intelligent automation enables the transition from reactive to proactive planning by augmenting human
decision-making with predictive, analytical, and execution capabilities. In this study, intelligent automation is
conceptualized as an integrated capability comprising three core dimensions: predictive intelligence, adaptive

decision logic, and automated execution.

Predictive intelligence refers to the use of advanced analytics and machine learning models to generate forward-
looking insights from historical and real-time data. These models continuously update demand forecasts and
disruption likelihoods, enhancing the sensing capability of the planning system. Adaptive decision logic
translates predictive insights into anticipatory planning actions, such as adjusting production volumes or
rebalancing inventory before disruptions escalate. Automated execution ensures that these adjustments are

implemented rapidly and consistently across the supply chain, reducing delays and coordination failures.

Importantly, intelligent automation is treated as a system-level capability rather than a collection of isolated
technologies. Its value emerges from the integration of prediction, decision-making, and execution within a
unified planning architecture. This integrated perspective aligns with dynamic capabilities theory, which

emphasizes the orchestration of resources and processes to adapt to environmental change.
3.3. Conceptual Framework Development

Building on the distinction between reactive and proactive planning, a conceptual framework is developed to
explain how intelligent automation enables proactive planning and improves supply chain performance. The
framework posits that intelligent automation enhances dynamic capabilities by strengthening sensing, seizing,

and reconfiguring processes within supply chain planning.

Specifically, predictive intelligence enhances sensing by enabling early identification of demand volatility and
disruption risks. Adaptive decision logic supports seizing by allowing planners to act on predictive insights
through anticipatory adjustments. Automated execution facilitates reconfiguring by implementing planning
changes across the supply chain with minimal delay. Together, these mechanisms enable a shift from reactive to
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proactive planning, resulting in improved performance outcomes such as higher forecasting accuracy, reduced

lead-time variability, and faster recovery from disruptions.

At the system level, the framework suggests that proactive planning mediates the relationship between
intelligent automation and performance outcomes. Intelligent automation alone does not guarantee superior
performance; rather, its impact depends on whether predictive insights are effectively translated into
anticipatory planning actions. This distinction helps explain mixed findings in prior research and highlights the

importance of aligning automation capabilities with planning processes.
3.4. Simulation Framework Design

To empirically examine the conceptual framework, a simulation-based modeling approach is employed.
Simulation allows controlled comparison of reactive and proactive planning systems under identical
environmental conditions, thereby isolating the effects of intelligent automation on performance. The simulation
framework represents a stylized multi-echelon supply chain consisting of suppliers, a focal manufacturer, and

downstream distribution nodes.

Two planning configurations are modeled. In the reactive configuration, planning decisions are updated at fixed
intervals based on historical demand and realized disruptions. In the proactive configuration, intelligent
automation is embedded into the planning system through predictive forecasting, scenario evaluation, and
automated adjustment rules. Both configurations are subjected to identical demand patterns and disruption

scenarios, enabling direct performance comparison.

Key sources of uncertainty in the simulation include stochastic demand variability and probabilistic supply
disruptions. Demand follows a non-stationary process to reflect realistic market conditions, while disruptions
are modeled as random events affecting lead times and capacity availability. The simulation is run over multiple

periods and replicated across numerous iterations to generate robust primary data.
3.5. Performance Metrics and Output Variables

Performance is assessed using three primary metrics that capture planning effectiveness and resilience.
Forecasting accuracy is measured by the deviation between predicted and realized demand, reflecting the
quality of sensing and prediction. Lead-time variability captures the stability of operational performance and
the effectiveness of anticipatory planning adjustments. Disruption recovery speed measures the time required

for the supply chain to return to normal performance following a disruption, reflecting resilience.

These metrics are selected because they are directly influenced by planning decisions and are widely used in the
supply chain literature. By generating these measures through simulation, the study produces primary data that

allow systematic comparison of reactive and proactive planning systems.
4. Methodology
4.1. Research Design and Approach

This study adopts a simulation-based research design to examine the performance implications of intelligent

automation-enabled proactive supply chain planning. Simulation modelling is particularly appropriate for
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analyzing complex, dynamic systems where controlled experimentation in real-world settings is impractical or
infeasible. By generating primary data through repeated simulation runs, the approach enables systematic
comparison of alternative planning architectures under identical conditions of demand uncertainty and

disruption intensity.

The methodological objective is not to replicate a specific firm or industry, but to capture generic planning
dynamics that are representative of contemporary manufacturing supply chains. This abstraction allows
theoretical mechanisms to be examined without confounding effects arising from firm-specific characteristics.
The simulation framework is therefore designed to balance realism with analytical tractability, consistent with

established practices in supply chain research (Sterman et al., 2015; Ivanov & Dolgui, 2020).
4.2. Supply Chain Structure and Planning Configurations

The simulated supply chain consists of three echelons: upstream suppliers, a focal manufacturing entity, and
downstream distribution nodes. Material flows, information exchanges, and planning decisions are modeled
explicitly across these echelons. The focal manufacturer is responsible for demand forecasting, production

planning, and inventory allocation, making it the central decision-making unit in the simulation.

Two distinct planning configurations are implemented. The reactive planning configuration represents a
conventional approach in which forecasts are updated periodically based on historical demand data, and
planning adjustments occur only after deviations are observed. Disruptions are addressed through corrective

actions such as expediting or inventory rebalancing once their effects are realized.

The proactive planning configuration embeds intelligent automation into the planning process. Predictive
analytics and machine learning-based forecasting models continuously update demand expectations and
disruption probabilities. Adaptive decision rules translate predictive insights into anticipatory planning
adjustments, such as pre-emptive capacity reallocation or inventory repositioning. Automated execution
mechanisms ensure that these adjustments are implemented without delay, reducing reliance on manual

intervention.
4.3. Modelling Demand and Disruption Dynamics

Demand is modeled as a stochastic, non-stationary process to reflect realistic market conditions. Baseline
demand follows a mean-reverting process with random shocks, capturing both predictable trends and sudden
fluctuations. Demand volatility is systematically varied across simulation scenarios to assess the robustness of
planning systems under different environmental conditions. Supply disruptions are introduced probabilistically
and affect either lead times or production capacity. Disruptions vary in frequency, duration, and severity,
allowing examination of both minor disturbances and major shock events. The timing and characteristics of

disruptions are identical across reactive and proactive configurations to ensure comparability of results.
4.4. Simulation Execution and Data Generation

The simulation is executed over multiple planning periods to capture both short-term adjustments and long-

term performance dynamics. Each planning configuration is subjected to repeated simulation runs, with each
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run representing a distinct realization of demand and disruption conditions. This replication generates a
distribution of performance outcomes rather than single-point estimates, enhancing the robustness of the
analysis. Primary data are collected for each simulation run, including forecasting accuracy, lead-time
variability, and disruption recovery speed. These outputs are aggregated across runs to derive average
performance measures and variability indicators. The use of repeated runs allows statistical comparison of

reactive and proactive planning systems, even in the absence of real-world observational data.
4.5. Model Validation and Robustness Checks

Model validation is conducted through a combination of structural verification and behavioral validation.
Structural verification ensures that the logical relationships and decision rules implemented in the simulation
are consistent with established supply chain theory and practice. Behavioral validation involves assessing
whether the simulated system exhibits expected patterns, such as increased variability under higher demand
volatility or prolonged recovery following severe disruptions. Robustness checks are performed by varying key
model parameters, including demand volatility levels, disruption frequency, and planning update intervals.
These checks assess the sensitivity of results to underlying assumptions and help ensure that observed

performance differences are attributable to planning logic rather than modelling artifacts.
4.6. Ethical Considerations

As the study relies exclusively on simulation-generated data, no human subjects or proprietary organizational
data are involved. Consequently, ethical concerns related to data privacy, informed consent, or confidentiality
do not arise. The transparency of the modeling assumptions and decision rules further supports the

reproducibility and ethical integrity of the research.
5. Results and Analysis
5.1 Overview of Simulation Outcomes

The simulation experiments generated a comprehensive set of primary performance data across multiple
planning periods and disruption scenarios. Results are reported by comparing the reactive planning
configuration with the intelligent automation-enabled proactive planning configuration under identical
demand volatility and disruption conditions. Performance differences are evaluated across three key metrics:
forecasting accuracy, lead-time variability, and disruption recovery speed. Aggregated results represent average
outcomes across repeated simulation runs, ensuring robustness against random fluctuations. Overall, the results
indicate consistent and statistically meaningful performance advantages for the proactive planning
configuration. These advantages become more pronounced as demand volatility and disruption intensity
increase, suggesting that intelligent automation plays a critical role in enhancing planning effectiveness under

turbulent conditions.
5.2 Forecasting Accuracy

Forecasting accuracy differs substantially between the two planning configurations. Under low volatility
conditions, both reactive and proactive systems achieve comparable forecasting performance, reflecting the
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adequacy of historical data—based models in stable environments. However, as demand volatility increases,
forecasting errors in the reactive configuration rise sharply. This pattern reflects the inherent lag in reactive
systems, where forecasts are updated periodically and fail to capture emerging demand shifts in a timely
manner. In contrast, the proactive planning configuration demonstrates significantly lower forecasting error
across all volatility scenarios. Continuous model updating and machine learning-based forecasting allows the
proactive system to incorporate recent demand signals and adjust expectations dynamically. As a result,

forecasting accuracy remains relatively stable even under high volatility conditions.

Table 1. Comparative Forecasting Accuracy under Different Demand Volatility Levels

Demand Volatility Reactive Planning Proactive Planning

Low Moderate Low
Medium High Moderate
High Very High Moderate

The table provide comparative forecasting performance across volatility levels, highlighting the superior

adaptability of intelligent automation enabled planning systems.
5.3 Lead-Time Variability

Lead-time variability provides insight into the stability of operational performance. Simulation results show that
reactive planning systems exhibit increasing lead-time variability as disruptions become more frequent and
severe. Delayed responses to capacity constraints and supply interruptions lead to cascading effects across the
supply chain, amplifying variability over time. Proactive planning systems display markedly lower lead-time
variability across all scenarios. Anticipatory adjustments, such as preemptive inventory repositioning and
capacity reallocation, reduce the magnitude of operational shocks. Automated execution further shortens
response times, preventing small disturbances from escalating into systemic instability. The difference in lead-
time variability is particularly pronounced under high disruption frequency, where proactive planning

maintains relatively stable performance while reactive systems experience significant degradation.
5.4 Disruption Recovery Speed

Disruption recovery speed captures the resilience of the supply chain by measuring the time required to return
to normal performance following a disruption. Reactive planning systems demonstrate prolonged recovery
times, especially when disruptions coincide with periods of high demand volatility. Corrective actions are
initiated only after performance degradation becomes evident, resulting in delayed stabilization. Proactive
planning systems recover more rapidly from disruptions. Predictive signals enable early activation of
contingency plans, while automated execution ensures swift implementation of corrective actions. As a result,

performance losses are contained and recovery trajectories are steeper.

5.5 Sensitivity and Robustness Analysis
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Robustness checks confirm that the observed performance advantages of proactive planning are not sensitive to
specific parameter settings. Variations in demand volatility, disruption frequency, and planning update
intervals do not alter the direction of the results. While absolute performance levels change with parameter
adjustments, proactive planning consistently outperforms reactive planning across all tested scenarios. These
findings suggest that the benefits of intelligent automation enabled proactive planning are structurally

embedded in the planning logic rather than being artifacts of particular modeling assumptions.
5.6 Summary of Key Findings

The results provide clear simulation-based evidence that intelligent automation facilitates a shift from reactive
to proactive supply chain planning. Proactive planning systems demonstrate superior forecasting accuracy,
reduced lead-time variability, and faster disruption recovery, particularly under conditions of heightened
uncertainty. These performance gains support the theoretical proposition that intelligent automation enhances

dynamic capabilities by enabling anticipatory decision-making and rapid reconfiguration.
6. Discussion
6.1 Interpreting the Transition from Reactive to Proactive Planning

The results provide strong support for the argument that proactive supply chain planning represents a
qualitatively distinct decision-making paradigm rather than an incremental improvement over reactive
approaches. The simulation evidence shows that reactive planning systems struggle primarily because of
temporal misalignment: decisions are triggered only after deviations materialize, by which point performance
losses have already propagated across the supply chain. This structural lag explains the sharp deterioration in
forecasting accuracy, lead-time stability, and recovery speed under volatile conditions. In contrast, proactive
planning systems mitigate these limitations by shifting the timing and logic of decision-making. Predictive
insights allow the system to act on anticipated changes rather than realized outcomes, reducing the amplification
of variability. This finding aligns with prior conceptual work suggesting that anticipation, rather than
responsiveness alone, is the defining characteristic of effective planning in turbulent environments (Ivanov,
2020; Tiva et al., 2025b). The present study extends this literature by demonstrating, through primary simulation

data, that anticipation yields measurable and systematic performance advantages.
6.2 Intelligent Automation as a Dynamic Capability Enabler

From a dynamic capabilities” perspective, the findings clarify how intelligent automation strengthens sensing,
seizing, and reconfiguring processes within supply chain planning. Improved forecasting accuracy in the
proactive configuration reflects enhanced sensing capability, as predictive models continuously assimilate new
information and detect emerging patterns. Reduced lead-time variability indicates more effective seizing, as
anticipatory decisions stabilize operations before disruptions escalate. Faster recovery trajectories reflect
superior reconfiguring capability, enabled by automated execution of planning adjustments.

Importantly, the results suggest that intelligent automation does not create value in isolation. Performance
improvements emerge only when predictive insights are systematically translated into anticipatory planning
actions. This distinction helps explain mixed findings in prior empirical studies, where investments in advanced
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analytics failed to deliver expected benefits due to misalignment with planning processes (Bag et al., 2022; Tiva
et al,, 2025a). The present study therefore contributes to dynamic capabilities theory by illustrating how digital
technologies must be embedded within decision architectures to enable sustained adaptability.

6.3 Implications for Supply Chain Resilience

The findings also offer important insights into supply chain resilience. Proactive planning systems exhibit faster
recovery and lower cumulative performance losses following disruptions, indicating greater absorptive and
adaptive capacity. Rather than relying on buffers alone, proactive systems actively reshape planning decisions
in anticipation of shocks, reducing the need for costly corrective actions. This result reinforces emerging views
that resilience is not solely a function of redundancy or flexibility, but also of information processing and
decision timing (Ponomarov & Holcomb, 2009; Ivanov & Dolgui, 2020). Intelligent automation enhances
resilience by enabling early activation of contingency measures and coordinated responses across the supply
chain. As disruptions become more frequent and systemic, such anticipatory capabilities are likely to be

increasingly critical.
6.4 Theoretical Contributions

This study makes three primary theoretical contributions. First, it advances supply chain planning theory by
empirically distinguishing reactive and proactive planning logics and demonstrating their differential
performance implications. Second, it integrates intelligent automation into dynamic capabilities theory, showing
how predictive and automated decision-making mechanisms operationalize sensing, seizing, and reconfiguring
processes. Third, it contributes to resilience research by providing simulation-based evidence that proactive
planning enhances recovery speed and stability under disruption (Urbi et al., 2025). By employing a simulation-
based primary research design, the study also addresses methodological gaps in the literature. Unlike cross-
sectional survey studies, the simulation approach captures dynamic interactions and causal mechanisms that
unfold over time. This strengthens confidence in the observed relationships and provides a foundation for future

empirical validation.
6.5 Boundary Conditions and Contextual Considerations

While the results are robust across tested scenarios, their interpretation should consider contextual boundaries.
The simulated supply chain represents a stylized manufacturing context and abstracts from firm-specific
constraints such as organizational culture, governance structures, and human decision biases (Sazzad et al.,
2025). In practice, the effectiveness of proactive planning may depend on complementary investments in data
governance, skill development, and cross-functional coordination. Moreover, intelligent automation may
introduce new risks, including overreliance on algorithmic outputs and reduced managerial oversight. These
considerations underscore the importance of aligning technological capabilities with organizational processes
and controls. Future research should examine how human-machine interaction influences the effectiveness of

proactive planning systems.

7. Managerial Implications
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The findings of this study carry several actionable implications for supply chain managers and decision-makers
seeking to transition from reactive to proactive planning. First, the results indicate that investments in intelligent
automation should be prioritized toward planning functions rather than isolated operational tasks. Many
organizations adopt advanced analytics or automation tools in fragmented ways, focusing on local efficiency
gains. The simulation evidence suggests that value is realized when predictive analytics, decision logic, and

execution mechanisms are integrated into a coherent planning architecture that enables anticipation.

Second, managers should recognize that proactive planning is not an all-or-nothing transformation. The
performance gains observed in the simulation emerge through progressive enhancement of sensing, seizing, and
reconfiguring capabilities. In practice, this implies a staged implementation approach (Aral & Walker, 2014).
Organizations can begin by improving demand sensing through predictive analytics, followed by embedding
adaptive decision rules into planning processes, and finally automating execution to reduce response delays.
Sequencing automation initiatives in this manner reduces implementation risk and facilitates organizational
learning (Akhter et al., 2025).

Third, governance and oversight remain critical. While intelligent automation accelerates decision-making,
managerial judgment is still required to define decision thresholds, validate model outputs, and manage
exceptions. The results highlight the importance of aligning automation capabilities with clear accountability
structures to avoid overreliance on algorithmic decisions. Managers should therefore invest in developing
analytical literacy and cross-functional coordination to ensure that proactive planning systems are used

effectively.

Finally, the resilience benefits of proactive planning suggest that intelligent automation should be viewed as a
strategic investment rather than a short-term cost-saving initiative. Faster recovery from disruptions and
reduced performance volatility translates into long-term competitive advantages, particularly in environments
characterized by frequent shocks. Managers operating in such contexts should explicitly incorporate resilience
objectives into digital transformation strategies.

8. Limitations and Future Research Directions

Despite its contributions, this study has several limitations that offer opportunities for future research. First, the
simulation framework represents a stylized supply chain and abstracts from industry-specific and firm-level
complexities. While this abstraction enhances generalizability, future studies could calibrate simulation models

using empirical data from specific industries to improve contextual relevance.

Second, the study focuses primarily on planning-related performance metrics. Future research could extend the
framework to examine financial outcomes, environmental impacts, and social sustainability indicators. Such
extensions would provide a more holistic assessment of the implications of proactive planning enabled by

intelligent automation.

Third, the role of human decision-makers is simplified in the simulation model. In practice, human-machine

interaction plays a critical role in shaping planning outcomes. Future studies could explore hybrid decision
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models that explicitly account for managerial judgment, trust in automation, and organizational learning

dynamics.

Finally, emerging technologies such as generative artificial intelligence and autonomous decision agents present
new opportunities and risks for supply chain planning. Future research should investigate how these
technologies can be integrated responsibly into proactive planning systems and how they reshape the boundary

between human and automated decision-making.
9. Conclusion

This study examined the transition from reactive to proactive supply chain planning through the lens of
intelligent automation. Using a simulation-based primary research design, the study demonstrated that
intelligent automation—enabled proactive planning systems consistently outperform traditional reactive
approaches in terms of forecasting accuracy, lead-time stability, and disruption recovery speed. These findings
provide empirical support for the argument that anticipation, rather than responsiveness alone, is central to
effective supply chain planning in volatile environments. By grounding the analysis in dynamic capabilities and
resilience perspectives, the study clarifies the mechanisms through which intelligent automation enhances
planning performance. The results highlight that intelligent automation creates value not merely by improving
efficiency, but by enabling anticipatory decision-making and rapid reconfiguration of planning processes. As
supply chains continue to face escalating uncertainty, proactive planning supported by intelligent automation
is likely to become a critical source of competitive advantage. The study contributes to the supply chain literature
by offering simulation-based evidence that complements existing survey-based research and advances
understanding of proactive planning as a dynamic capability. For practitioners, the findings underscore the
importance of aligning automation investments with planning processes and governance structures. Together,
these insights provide a foundation for both scholarly inquiry and managerial action in the evolving landscape

of supply chain planning.
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