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Abstract: Artificial Intelligence (AI)-driven image analysis has made significant strides 

in dermatologic cancer care, showing dermatologist-level accuracy in melanoma 

detection through various publications. However, its integration into routine clinical 

practice remains limited, resulting in minimal impact in real-world scenarios. This 

review assesses AI applications across three main imaging methods in skin cancer 

management: clinical photography, dermoscopy, and histopathological slides. Key 

factors affecting diagnostic efficacy include image quality, annotation methods, dataset 

composition, and deployment context. Convolutional neural networks, particularly 

when provided with high-resolution images and validated biopsy labels, demonstrate 

effectiveness comparable to skilled dermatologists. However, performance diminishes 

significantly when models are tested on diverse devices, skin types, or lesion types. 

Clinical photograph systems, while less accurate, offer advantages in scalable triage and 

teledermatology. Histopathological models produce robust confirmatory results; 

however, they face obstacles including inadequate supervision, variability in staining, 

and substantial computational demands. Common issues across these modalities include 

dataset bias, underrepresentation of darker skin tones and benign lesions, noisy ground 

truth, and poor integration into clinical workflows. The authors put forward a three-tier 

framework to get the medical field ready for AI. They suggest using it in primary care to 

screen for lesions, as a decision-support tool in dermoscopy, and as a computational 

biomarker in digital pathology. Future developments will hinge on creating 

representative datasets, advancing training techniques, ensuring interpretability, long 

term monitoring of lesions, and achieving regulatory validation. Ultimately, mature AI 

systems are anticipated to act as diagnostic collaborators rather than replacements for 

clinicians, focusing on reducing unnecessary procedures, standardizing biopsy criteria, 

and improving equity in skin cancer management. 

Keywords: Artificial intelligence; Skin cancer; Dermoscopy; Deep learning; Clinical 

photography; Histopathology; Diagnostic imaging 

 

 

Article History: 

Received: 11 October 2025 

Accepted: 13 December 2025 

Online: 15 December 2025 

 

Corresponding author: 

rokibhasan54somc@gmail.co

m 

 

Citations: Das, S., Rahman, 

S. F. I., Hasan, M. R. & 

Ansari, M. A. S. (2025).  

Artificial Intelligence for 

Skin Cancer Imaging: 

Performance, Translational 

Gaps, and a Three-Tier 

Clinical Readiness 

Framework. Pathfinder of 

Research, 3(3), 47-63 

 

Copyright: © 2025 The 

Authors. Published by 

Pathfinder Publisher. This is 

an open access article under 

the CC BY license 

(http://creativecyommons.or

g/licenses/by/4.0/). 

 

mailto:rokibhasan54somc@gmail.com
mailto:rokibhasan54somc@gmail.com


 
 
 
 
Das et al., 2025                                                                                                                                        Pathfinder of Research || Vol. 3 No. 3 (2025)      
   

Page 48 of 63 

 

1. Introduction  
 
Skin cancer is the most frequent type of cancer found around the world, and in many places, the number of cases 

is continually rising. Melanoma is not extremely common, but it kills many people with skin cancer because it 

spreads to other parts of the body rapidly. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are 

more common; however, they aren't usually as fatal when treated right away. Recent global estimates suggest 

that non-melanoma skin cancers affect several million individuals annually, while tens of thousands of new 

melanoma cases are reported each year just in high-income countries (American Cancer Society, 2024; WHO, 

2024). The survival rate for early-stage melanoma exceeds 95%; however, the prognosis markedly declines with 

a delayed diagnosis (Salinas et al., 2024). The primary clinical challenge is not the lack of suitable treatment but 

the failure to consistently and swiftly detect high-risk lesions. 

There are several reasons why diagnostic delays develop, and they depend on the situation. In low-resource 

settings, limited access to dermatologists, lengthy referral processes, and insufficient biopsy facilities lead to 

many patients initially presenting with severe disease. In more affluent health systems, the issue is distinct: there 

exists a prevalence of benign lesions, considerable discord among observers regarding their visual assessment, 

and significant ambiguity when lesions reside in diagnostic gray zones, such as early melanoma versus atypical 

or dysplastic nevi (Liu et al., 2023; Akhter et al., 2025). Dermoscopy has made it easier to find subsurface features 

and unique pigment patterns, but even experienced doctors still misclassify many lesions, especially when they 

are busy or have many patients to see. 

Some people believe that AI, especially deep learning, could be valuable in these situations. Convolutional 

neural networks (CNNs) can learn hierarchical representations directly from large collections of images. This 

means they don't have to do manual feature engineering and can employ subtle, high-dimensional cues that are 

difficult for individuals to put into words. Leading benchmark studies demonstrate that CNNs can attain or 

exceed dermatologist-level performance in melanoma classification when trained on rigorously curated 

dermoscopic datasets with biopsy-validated labels (Esteva et al., 2017; Brinker et al., 2019). These results have 

generated considerable research interest in AI-assisted pipelines that include lesion detection, segmentation, 

classification, and risk stratification. 

But people become so enthused about headline accuracy figures that they forget that most models are built in 

scenarios that are far different from how things really work. Algorithms typically perform less effectively when 

presented with images of new institutions, other technologies, or a broader spectrum of individuals. Changes in 

lighting, camera settings, resolution, lesion framing, and skin phototype, as well as changes in the types of 

benign and malignant lesions, all make it difficult to generalize and cause domain shift (Goyal et al., 2020; Wu 

et al., 2022). Additionally, many datasets are created from patients who have been pre-selected for expert 

evaluation, leading to an overrepresentation of diagnostically complex or high-risk lesions and an 

underrepresentation of common benign conditions. Such variation makes both training and testing less accurate, 

which makes it seem like performance in the real world is better than it really is. AI research in skin cancer has 

also grown beyond dermoscopy. There are three main imaging contexts that are common in the literature right 

now. First, clinical photos are the first thing patients see when they come into contact with the health system. 
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These images are usually captured with mobile phones or normal digital cameras. These photos are diverse from 

one another, noisy, and usually feature more than one lesion or a background structure that is challenging to 

understand. But they are highly useful for scalable triage and teledermatology. Second, dermoscopic images 

provide ordered, high-contrast representations of lesion anatomy and have become the primary basis for AI 

studies claiming dermatologist-level performance (Tschandl et al., 2019b; Shetty et al., 2022). Third, 

histopathological whole-slide images are the best way to tell if a tumor is cancerous, but they are difficult to 

work with because they are so big (gigapixels), the labels are not obvious, and different labs use different 

methods for staining and scanning (Liopyris et al., 2022; Melarkode et al., 2023). Because of this, each modality 

is at a different point in the diagnostic process and needs distinct techniques to model, validate, and combine. 

Even while the literature is developing swiftly, there is still not much agreement on how to look at the 

information as a whole in terms of being ready for real clinical situations. Many assessments summarize model 

architectures and performance measures but inadequately address dataset bias, ground-truth integrity, external 

validation, or practical workflow constraints (Mukherjee Behara et al., 2024; Martinez-Vargas et al., 2025). 

Some people only care about dermoscopy and don't consider the wider picture of digital pathology and clinical 

photography. For clinicians and policymakers, the pertinent questions are not “Can AI compete with experts on 

a test set?” but rather “In what circumstances does AI enhance patient care?”, “At which stages of the care 

pathway is AI most beneficial?”, and “How can we ensure these tools do not exacerbate existing disparities, 

particularly for marginalized skin types and health systems?” 

This review tackles these shortcomings by scrutinizing various AI types and their applications in the context of 

skin cancer diagnosis. To start, we look at AI systems that use clinical photographs, dermoscopic pictures, and 

histological slides. We examine how the data's quality, labeling, and task setup affect the system's ability to 

identify issues. Second, we generated a list of cross-cutting issues, such as dataset bias, class imbalance, not 

enough skin tone variability, noisy labeling, domain shift, limited explainability, privacy issues, and difficulty 

with integrating workflows. Third, we discuss new technical and organizational ideas that could help the field 

advance beyond proof-of-concept models to tools that can be utilized in real life. Some of them are federated 

learning, domain-generalization strategies, self-supervised pretraining, and interpretability frameworks (Team, 

Scientific Data Curation, 2021; Li et al., 2022; Gohil & Desai, 2024). 

To ground this discussion in clinical reality, we propose a three-tier clinical readiness framework that delineates 

the specific roles AI can assume in skin cancer care: (i) autonomous suspicion screening in community and 

primary care utilizing clinical photographs, (ii) high-specificity decision support during dermoscopic evaluation 

prior to biopsy, and (iii) computational biomarker extraction from histopathology for diagnostic validation and 

prognostic enhancement. Putting current evidence into this layered structure makes it easier to honestly assess 

what AI can and can't do right now, where it is most likely to have an effect, and which research areas are most 

important if AI is to make a real difference in skin cancer by finding it earlier, reducing overtreatment, and 

making outcomes fairer. 

2. AI-Based Imaging and Diagnostic Methods for Skin Cancer 

Artificial intelligence systems developed for skin cancer diagnosis have diverse behaviors contingent upon the 
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imaging modalities employed during their training. Therapeutic photographs, dermoscopic images, and 

histopathological whole-slide scans create distinct visual conditions that influence model performance, alter 

annotation reliability, and determine therapeutic utility (Tschandl et al., 2019b; Shetty et al., 2022). People have 

had great hopes for these systems because they have often been regarded as equivalent. A realistic evaluation 

must, therefore, assess modality-specific performance and its alignment with genuine therapeutic pathways. 

This phase puts together the evidence while retaining the key framework that a high-impact review need. 

2.1 AI on Dermoscopic Images: Great Performance When There Are Limits 

Dermoscopy offers you pictures that are bigger, polarized, and arranged in a way that assists convolutional 

structures a lot. These pictures have diagnostic traits such as pigment networks, streaks, regression zones, and 

vascular patterns. This feature enables deep neural networks to extract hierarchical representations that are 

closely associated with melanoma risk (Winkler et al., 2023). Initial seminal studies indicated that deep learning 

could perform comparably to or beyond dermatologists on standardized dermoscopic datasets (Haenssle et al., 

2018; Brinker et al., 2019). AI is frequently quite sensitive in these controlled circumstances and often does better 

than doctors at being specific, which means fewer unnecessary biopsies. 

However, this strength primarily stems from the quality of the dermoscopic datasets, not their actual strength. 

Public datasets such as ISIC and HAM10000 contain lesions that are more diagnostically intriguing than 

common benign ones. Most of the patients they see have lighter skin types, and they take pictures in the most 

prestigious locations (Goyal et al., 2020; Santoro, 2023). Models trained on these datasets perform markedly 

worse when exposed to unfamiliar devices, institutions, demographics, or lighting conditions. Figure 1 

illustrates the variety of dermoscopic lesion categories typically present in study datasets. 

 

Figure 1: Different categories of dermoscopic skin lesions (Adopted from Shetty et al., 2022). 
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The structured detail evident in figure 1 explains why dermoscopy-based AI performs strongly in controlled 

environments yet becomes fragile under domain shift. Similarly, figure 02, adopted from Goyal et al. (2020), 

shows an ensemble CNN interpretation for lesion categorization, highlighting how model predictions rely on 

high-quality, centrally framed dermoscopic fields. 

 

 

 

Figure 2: Skin lesion categorization using an ensemble CNN technique (Adopted from Goyal et al., 2020). 

Although dermoscopy provides the richest visual substrate for training, its clinical readiness is limited by dataset 

bias and poor generalization. This places dermoscopic AI within the category of diagnostic refinement tools, 

useful once a lesion has already reached specialist evaluation but not reliable enough for autonomous diagnosis. 

 

Table 1: Major Publicly Used Image Datasets in AI-Based Dermatology Research. 

Dataset 

name 

Approximate 

image count 

Primary label 

source 

Predominant skin 

types represented 
Key characteristics and notes 

ISIC 

Archive 

> 33,000 

dermoscopic 

images 

Expert review plus 

biopsy for subsets 

Mostly Fitzpatrick I-

III 

Largest open dermoscopic repository; 

benchmark for many CNN studies; 

substantially biased toward 

suspicious lesions (Goyal et al., 2020). 

HAM10000 

~10,015 

dermoscopic 

images 

Histology, 

confocal imaging 

and follow-up 

Mostly lighter 

phototypes, small 

non-Caucasian 

fraction 

Frequently used for multiclass lesion 

classification; better class balance than 

older sets but still limited diversity in 

skin tone (Mendonça et al., 2013). 

PH2 

Dataset 

200 dermoscopic 

images 
Biopsy-verified 

Limited range of skin 

types 

Small, high-quality dataset with very 

reliable labels; mainly used for 
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Dataset 

name 

Approximate 

image count 

Primary label 

source 

Predominant skin 

types represented 
Key characteristics and notes 

segmentation and calibration work 

(Mendonça et al., 2013). 

Dermofit 

~1,300 clinical 

and dermoscopic 

images 

Dermatologist 

visual diagnosis 

Predominantly light 

phototypes 

Includes multiple benign and 

malignant classes; useful for model 

calibration but relatively small and 

geographically narrow (DERMOFIT, 

n.d.). 

Asan 

Dataset 

~17,000+ 

dermoscopic 

images 

> 12,000 biopsy-

confirmed lesions 

Largely Asian 

population 

Institution-specific dataset with 

strong histologic confirmation; 

valuable for assessing generalization 

to non-European cohorts (Han et al., 

2018; Goyal et al., 2020). 

 

2.2 AI on Clinical Photographs: Broader Reach, Lower Predictive Precision 

Clinical photographs show how patients first see the healthcare system. These photographs were taken with 

smartphones or regular cameras in places where the lighting isn't always adequate. The quality and backdrops 

are different, and they show hair, freckles, inflammation, and other things that take away from the picture. 

Lesions often only cover a small part of the frame. In these cases, AI must first identify the lesion before putting 

it into a category. When full-frame pictures are used without segmentation, models often mistake background 

textures for diagnostic signs, which leads to inconsistent results. The use of segmentation or adaptive cropping 

greatly improves how well categorization works (Gessert et al., 2020). 

Clinical-image databases demonstrate markedly greater diversity compared to dermoscopic archives, including 

a wide range of benign and non-neoplastic dermatological conditions. This unpredictability increases the false-

positive rate for melanoma classification, especially when models are mostly trained on dermoscopic datasets 

that focus on melanoma. Despite their shortcomings, clinical-image AI algorithms are essential for real-world 

triage. Future primary-care assessments show that AI-assisted screening cuts down on unnecessary referrals 

and accelerates the process of finding high-risk cases (Giavina-Bianchi et al., 2021). 

Table 2: Summary of AI Performance Across Imaging Modalities 

Imaging 

modality 

Typical input 

source 

Data 

resolution 
Main strengths Main limitations 

Most 

appropriate 

clinical role 

Clinical Smartphone or Low to Very accessible; High noise; Early suspicion 
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Imaging 

modality 

Typical input 

source 

Data 

resolution 
Main strengths Main limitations 

Most 

appropriate 

clinical role 

photographs consumer 

camera images 

medium supports 

teledermatology and 

large-scale triage; 

cheap to collect 

background clutter; 

strong device and 

lighting variability; 

broad mix of benign 

conditions 

screening and 

triage in 

community and 

primary-care 

settings 

Dermoscopic 

images 

Polarized, 

magnified 

dermatoscope 

images 

Medium to 

high 

Highly discriminative 

morphology; best 

benchmark 

performance; strong 

feature richness 

Dataset bias; over-

representation of 

suspicious lesions; 

poor representation 

of darker skin; 

domain shift across 

centers 

Diagnostic 

refinement and 

biopsy decision 

support in 

specialist 

dermatology 

clinics 

Histopathology 

whole slides 

Digitized 

histopathology 

(WSI) from 

scanners 

Very high 

(gigapixel) 

Definitive ground 

truth; fine-grained 

cellular and 

architectural detail; 

potential for 

quantitative 

biomarkers 

Weak supervision at 

slide level; severe 

stain/device 

variability; high 

computational 

burden; 

reproducibility issues 

 

 

Clinical photographs therefore provide accessibility rather than high diagnostic precision. Their most realistic 

clinical role aligns with early-stage triage, allowing clinicians to determine which lesions warrant dermoscopic 

evaluation or urgent referral. This shift from diagnostic ambition to triage utility is consistent with current 

evidence (Team, 2020; Mukherjee et al., 2025). 

2.3 Histopathology-Based AI: Definitive Ground Truth with Gigapixel Complexity 

Histopathology is still the greatest way to detect if someone has melanoma, but it's also the toughest thing for 

AI to perform. Whole-slide images (WSIs) are too enormous to look at all at once; therefore, they need to be 

broken up into smaller pieces. Weak monitoring makes matters considerably difficult because slide-level labels 

are used even when only a small part of the tissue is malignant. Contemporary models employ multiple-instance 

learning and attention mechanisms to ascertain the presence of diagnostic signals within patches (Melarkode et 

al., 2023). 

When employed in a single lab, AI based on histopathology shows a lot of potential for discovering tumor nests, 
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mitotic activity, and architectural problems. But even small changes to the chemical used for staining, the 

thickness of the slides, or the technology used for scanning can cause a lot of domain drift. Models trained in 

one place don't always work well when used outside of that place, unless strong stain-normalization methods 

or domain-adaptation methods are used (Li et al., 2022). 

Histopathology AI should be viewed as an additional analytical layer that validates existing knowledge among 

pathologists, rather than a substitute for their clinical expertise. The clinical pathway should position it at the 

confirming end of the diagnostic spectrum, where adherence to regulations, the ability to repeat tests, and the 

comprehension of results are all crucial aspects. 

2.4 Integrating Modality-Specific AI into a Unified Diagnostic Pathway 

The three types of imagery work together to create a layered AI landscape. Clinical photographs are easy to 

access to, but they don't always provide accurate predictions. Dermoscopy presents organized morphological 

data that makes it easier to classify things in controlled settings. Histopathology presents clear ground truth, but 

it can be problematic for AI systems because of staining variability and gigapixel complexity. Your charts and 

graphs make it obvious that there is a big difference between the two methods of imaging. 

3. Major Challenges and Limitations in AI-Based Skin Cancer Diagnosis 

Even though they are becoming better quickly and often say they are as competent as dermatologists, AI systems 

for diagnosing skin cancer still have difficulties with their structure, methods, and use that make them less 

dependable in real life. Many of the best results come from datasets and evaluation methods that are too limited 

and don't represent how varied and difficult real clinical settings are. As a result, there is still a big difference 

between benchmark performance and actual clinical readiness. Understanding these limitations is essential for 

evaluating present results and guiding future research that authentically meets clinical needs rather than merely 

technical convenience (Tschandl et al., 2019a). 

3.1 Dataset Bias, Class Imbalance, and Insufficient Skin Tone Diversity 

A primary challenge in dermatologic AI is the intrinsic bias found in publicly available datasets. ISIC and 

HAM10000 contain too many lesions that look strange or suspicious since most of the samples come from tertiary 

dermatological centers, where patients travel after an early stage of clinical triage. Such bias makes the case 

spectrum look weird because there are a lot more melanomas and other high-risk lesions than there are in typical 

practice. Models trained on such data inevitably learn decision limits that are overly tuned for differentiating 

between high-risk lesions rather than properly detecting the substantially broader spectrum of benign diseases 

encountered in typical settings (Gajjar et al., 2025). 

People are increasingly acknowledging another drawback: the scarcity of diverse skin phototypes. Fitzpatrick 

skin types I-III make up the majority of datasets. This means that models don't work well on skin tones that are 

darker. Lesions on darker skin show different contrast properties, pigment distribution, erythema visibility, and 

backdrop texture, all of which make it harder to categorize them. Numerous studies have documented 

reductions in accuracy and sensitivity exceeding ten to fifteen percentage points when models are evaluated 

using images from populations not included in the training set (Tiva et al., 2025a). This inconsistency not only 
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undermines clinical reliability but also threatens to worsen existing imbalances, particularly for areas already 

facing delayed diagnoses and institutional barriers to dermatologic care. 

3.2 Noisy Labels, Weak Ground Truth, and Intrinsic Diagnostic Ambiguity 

The quality of the labels used to train an AI system is what makes it trustworthy. In dermatology, many image 

databases rely on professional visual interpretation instead of biopsy-confirmed diagnoses. Even among 

experienced dermatologists, differences between observers are common, especially for borderline lesions like 

early melanoma, dysplastic nevi, and collision tumors. Research indicates that disagreement rates for certain 

cases are between 15% and 25%, which means that AI models trained on these labels learn how people make 

mistakes instead of a solid diagnostic truth (Liopyris et al., 2022). 

Histopathology is much worse off when there is insufficient oversight. Whole-slide images are given one 

diagnostic label, yet the tumor areas may only represent a minor part of the tissue. When each tile obtains the 

slide-level label, the model has to determine which areas fit the pathological signal. This situation causes the 

forecasts at the patch level to be unstable. This can result in models that appear proficient in slide-level 

categorization yet fail to comprehend essential clinical factors such as tumor edges, architectural disarray, or 

mitotic activity (Melarkode et al., 2023). The absence of uniform pixel-level annotation limits the interpretability 

and overall clinical reliability of these systems. 

3.3 Failure to Generalize and Weak External Validation 

One of the main issues with AI research in dermatology is that models always fare worse when they are 

evaluated on data sets that are not their own. A lot of research looks at models by splitting one dataset into 

training and testing groups. This keeps the imaging conditions, lesion spectrum, and device properties the same 

across these groups without meaning to. This results in performance metrics that appear satisfactory but 

deteriorate upon the inclusion of additional center images. Many external validation studies show that using 

model predictions in real clinical contexts leads to big drops in sensitivity, specificity, and area-under-curve 

values (Wu et al., 2022). 

Generalization failure occurs due to various factors, including differences in camera sensors, dermatoscope 

characteristics, lighting conditions, color calibration, anatomical locations, and patient demographics. In actual 

practice, lesions are often only partially visible, not well defined, or surrounded by other tissues like hair or 

inflammation. In these uncontrolled conditions, dermatologists generally do better than the models, especially 

when it comes to lesions that are challenging to diagnose. Regulatory bodies are hesitant to approve fully 

autonomous diagnostic systems, and one of the key reasons is that AI is still vulnerable to domain shift (Salinas 

et al., 2024). 

3.4 Limited Explainability and Weak Clinical Trust 

Usually, deep learning models produce probability scores without saying why. Saliency maps and gradient-

based representations attempt to delineate key regions; nevertheless, their outputs frequently lack consistency, 

exhibit noise, or fail to correlate with clinically established dermoscopic patterns such as regression structures, 

blue-whitish veils, or pigment networks. Doctors, especially dermatologists and pathologists, need adequate 
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justifications for making judgments that could lead to a biopsy, surgery, or reassurance. AI systems that can't 

explain things clearly make it challenging for doctors to do their jobs and the output of algorithms. 

Researchers found that doctors typically don't pay attention to AI ideas when the reasons aren't obvious or when 

the results don't match what they think (Giavina-Bianchi et al., 2021). In a field where medical and legal 

accountability is quite high, skepticism of black-box forecasts is understandable. AI is still not used in healthcare 

decision-making because its explanations are inadequate. 

3.5 Privacy Issues, High Annotation Costs, and Data Fragmentation in Institutions 

You need enormous, diversified, and well-annotated datasets to make strong AI models. But it takes a lot of time 

and money to develop these kinds of databases. Clinical photographs need to be carefully chosen, dermoscopic 

images need to be carefully labeled, and histopathology slides need to be carefully prepared and checked. 

Privacy restrictions like HIPAA and GDPR make it extra tough for organizations to share data. This leads to 

separate silos instead of unified databases that show the complete population. 

Federated learning has emerged as a feasible approach by enabling model training across several locations 

without the requirement of sharing raw data; nonetheless, its effectiveness is dependent on stringent 

standardization of imaging methods, labeling conventions, and preprocessing workflows. Institutions rarely 

share similar workflows, hence limiting the practical applicability of federated approaches (Melarkode et al., 

2023). AI systems are still limited to becoming instruments that only work in certain institutions, not diagnostic 

companions that everyone can utilize without a lot of standardized data. 

3.6 Workflow Mismatch and Lack of Integration into Real Clinical Practice 

Clinical contexts are complex decision-making processes that take into account a patient's medical history, the 

course of lesions, other health problems, risk factors, imaging, and the doctor's gut feeling. Most AI systems just 

look at one picture at a time and don't consider other things that could change the diagnosis. AI outputs 

frequently function as additional second opinions rather than contributing significantly to the diagnostic 

process. Dermatologists frequently disregard recommendations when the outcomes are illogical or when their 

incorporation into electronic health records becomes challenging (Liopyris et al., 2022). People probably won't 

use AI technologies that make it difficult to think, get in the way of work, or add steps that aren't necessary. AI 

should simplify clinical reasoning and documentation, not complicate them, to enable their effective integration. 

3.7 Computational Burden and Hardware Limitations 

Lastly, adopting this technology remains challenging due to various technological issues. It is extremely difficult 

to apply histopathology models in regions with few resources since they demand powerful GPUs and a lot of 

storage space to process gigapixel slides. Clinical-photo models, on the other hand, need to function with light 

technologies like cellphones. This means that the models can't be too intricate and may not be as precise. 

Different camera qualities, compression methods, and image resolutions make things even less stable (Li et al., 

2022). In many low- and middle-income countries, the challenges get worse when imaging tools and network 

connections aren't always available. This makes the gap between experimental results and real-world viability 

much worse. As long as the quality of the hardware is closely related to how well the AI system can make 
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diagnoses, it will be impossible for AI systems to work equitably in different healthcare settings. 

4. Future Opportunities for Artificial Intelligence in Skin Cancer Diagnosis 

The growing study on artificial intelligence for skin cancer diagnosis shows that while there are some great 

technical advances, there are also big problems in making them work in the real world. To go from high-

performance prototypes to clinically reliable systems, we need to change the way we train, test, integrate, and 

monitor models. Even while existing algorithms can reach expert-level accuracy in controlled settings, AI 

systems will only be truly useful in clinical settings when they can handle variability, explain their rationale 

clearly, treat all groups fairly, and be integrated into diagnostic workflows. To comprehend the future prospects 

for AI in dermatologic oncology, it is essential to view them not merely as incremental technical enhancements 

but as integral to a comprehensive shift towards clinically informed design. 

In the future, it's vital to create large datasets that represent the entire population. The absence of variation in 

current datasets, including skin tone, lesion kind, imaging technology, or clinical situation, perpetuates the 

challenge of generalization. Collaborations across multiple institutions, along with privacy-preserving methods 

like federated learning, offer a viable way to create unified datasets without violating patient privacy. Federated 

learning enables institutions to provide model updates instead of raw data; nonetheless, its efficacy is contingent 

upon shared labeling techniques, uniform preprocessing pipelines, and defined imaging circumstances (Urbi et 

al., 2021). When done right, these kinds of distributed data ecosystems could help eradicate biases that have 

been around for a long time and make models that work well with a wide range of patients and imaging settings. 

Another big chance is to design algorithms that focus on outward validity instead of optimizing for internal 

benchmark results. Traditional supervised learning frequently falters in the face of domain transition, 

necessitating innovative methodological strategies. Domain-generalization techniques, adversarial variance 

reduction, style-transfer augmentation, and self-supervised representation learning offer intriguing avenues for 

developing models that exhibit reduced sensitivity to lighting conditions, device variability, and background 

noise (Wu et al., 2022; Tiva al., 2025a). Transformer-based architectures, which use global receptive fields instead 

of just local ones, might make stability even better when lesions show up in places that aren't in the center or 

when there is a lot of background noise. These methods focus on resilience instead of pure accuracy, which 

shows a move toward models that can handle the volatility of real-world clinical imaging. 

Explainability will also be a key factor in whether AI becomes a trusted diagnostic partner. Current saliency-

based explanations frequently lack the precision or stability required to meet therapeutic standards. Future 

systems must produce outputs that are both interpretable and therapeutically significant, such as emphasizing 

specific dermoscopic structures like pigment networks, streaks, or regression zones, or distinguishing 

histopathologic traits such as mitotic figures and architectural anomalies. In prospective experiments, hybrid 

human-AI interaction models that incorporate uncertainty estimations or confidence overlays with explanations 

have been shown to enhance clinician trust and facilitate improved decision-making (Gajjar et al., 2022). For AI 

to be accepted in dermatology and pathology, it needs to be able to reason in a way that is consistent, clear, and 

anatomically correct with clinical heuristics. Adding time-based information to static photographs presents a 

transformative opportunity. Clinicians regularly evaluate the progression of lesions throughout time, noting 
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alterations in color, border geometry, and overall symmetry. AI systems that can look at long-term image 

sequences could identify subtle changes that people miss, making it easier to detect malignant transformations 

earlier. Adding patient metadata such as age, family history, immunologic status, or previous lesion history 

should improve risk stratification and make predictions more in line with the fact that skin cancer risk is caused 

by many things (Li et al., 2022, Tiva et al., 2025b). These multimodal systems might render more clinically 

consistent evaluations than models that solely use images. 

Histopathology is also a wonderful place for new ideas to grow. Improvements in multiple-instance learning, 

attention-based aggregation, and graph neural networks are helping models identify both small cellular 

problems and bigger patterns in architecture. These systems could develop into instruments that facilitate tumor 

staging, margin evaluation, or the determination of prognostic indicators, including Breslow thickness and 

mitotic density (Gessert et al., 2020). Histopathology AI may eventually go beyond just making diagnoses to 

help with prognosis, treatment planning, and making individualized decisions about treatment. To succeed in 

this field, staining techniques must be standardized and validated by multiple institutions, and models that 

work in all lab settings must be created. 

Simultaneously, deployment-focused AI presents prospects for influence across diverse healthcare 

environments. Smartphone-based triage solutions may be most useful in places where there aren't many 

dermatological specialists and resources are limited. Initial research indicates that AI-enhanced teledermatology 

systems can expedite referrals for high-risk lesions and diminish superfluous clinic visits (Urbi et al., 2025). In 

urban hospitals, AI might be an internal quality-control layer that lowers the difference between observers or 

finds lesions that were missed during busy clinical operations. In digital pathology, algorithms can assist 

pathologists in finding areas of interest more quickly, which can help them stay awake and make more accurate 

diagnoses. In the end, the best chance for progress is not to make self-sufficient diagnostic systems but to create 

long-lasting partnerships between humans and AI in the clinic. Dermatology and pathology are interpretive 

disciplines that necessitate the integration of pattern recognition with clinical judgment, patient history, and 

contextual knowledge. AI systems that enhance human expertise by standardizing thresholds, quantifying risk, 

emphasizing pertinent structures, or delivering consistent second readings are significantly more likely to be 

embraced than those intended to supplant physicians. As technical and organizational advancements increase, 

AI is set to evolve into a structured decision-support collaborator rather than a standalone adjudicator of 

malignancy (Sazzad et al., 2025). To make this vision a reality, we need to keep working on having a variety of 

training data, strict cross-institutional validation, clinically useful interpretability, open reporting of biases, and 

integration methodologies that take into account how clinical work actually works. It is also important to ensure 

that AI is used fairly so that it improves results for everyone instead of making existing differences worse. If 

these chances are taken advantage of in a planned way, AI can go from being an intriguing experimental tool to 

a dependable and morally sound part of global skin cancer therapy. 

5. Conclusion 

Artificial intelligence has made great strides in dermatologic oncology, showing that deep learning models can 

match or even beat expert performance in very controlled, limited settings. These accomplishments, especially 



 
 
 
 
Das et al., 2025                                                                                                                                        Pathfinder of Research || Vol. 3 No. 3 (2025)      
   

Page 59 of 63 

 

in dermoscopic imaging, validate that AI can discern diagnostically significant patterns from cutaneous lesions 

with a granularity that enhances human sensibility. The evidence from different imaging methods shows that 

outstanding accuracy on curated datasets does not mean that the system is ready for clinical use in general. 

Variations in equipment, skin tones, acquisition settings, and lesion epidemiology consistently cause models to 

deteriorate when tested in real-world scenarios. This means that lab and clinic result still differ greatly. 

Dermoscopy-based models are still the best at technical tasks, but they can't diagnose on their own because they 

use biased datasets and are sensitive to changes in the domain. Clinical-photograph AI algorithms, albeit less 

precise, provide considerable public health benefits by facilitating scaled triage and the prompt identification of 

high-risk cases in environments with little dermatological expertise. AI that focuses on histopathology and is 

backed by whole-slide imaging and more advanced architectures shows outstanding internal performance, but 

it is still limited by insufficient supervision, staining variability, and unmet needs for cross-institutional 

reproducibility. In all modalities, biased representation, lack of skin tone variety, noisy ground truth, limits on 

how simple it is to understand, and workflow misalignment still make it difficult to use these tools in everyday 

clinical practice. 

Even with these problems, current research indicates that there is a way to meaningful integration in the future. 

Improvements in federated learning, domain generalization, and self-supervised representation learning could 

lead to models that stay stable across different groups of people and imaging settings. Parallel attempts to 

improve explainability, combine data from different sources, record how lesions change over time, and create 

stain-invariant histopathology models are breaking down long-standing barriers to clinician trust and 

regulatory acceptability. As these improvements develop, AI is becoming less of a replacement for 

dermatologists or pathologists and more of a structured decision-support tool that improves consistency, cuts 

down on unnecessary tests, and makes it easier for more people to undergo early evaluations. In its clinically 

advanced state, AI is expected to function across three tiers of the diagnostic continuum: scalable suspicion 

screening utilizing clinical photographs at the community interface, diagnostic enhancement via dermoscopic 

assessment in specialized environments, and confirmatory and prognostic enhancement within digital 

pathology processes. This kind of stratified model makes sure that AI helps rather than hinders in the way of 

clinical thinking and that its benefits correspond with the strengths and weaknesses of each imaging method. 

To make this vision a reality, we will need to keep working on making datasets more diverse, open, and 

validated by outside sources. Additionally, we must ensure their equitable use and alignment with authentic 

clinical workflows. If these prerequisites are met, AI-enabled diagnostic systems could significantly increase the 

early identification of melanoma, lessen worldwide inequalities in dermatologic treatment, and improve the 

accuracy and consistency of skin cancer diagnostic decision-making. 
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