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Abstract: Artificial Intelligence (AI)-driven image analysis has made significant strides
in dermatologic cancer care, showing dermatologist-level accuracy in melanoma
detection through various publications. However, its integration into routine clinical
practice remains limited, resulting in minimal impact in real-world scenarios. This
review assesses Al applications across three main imaging methods in skin cancer
management: clinical photography, dermoscopy, and histopathological slides. Key
factors affecting diagnostic efficacy include image quality, annotation methods, dataset
composition, and deployment context. Convolutional neural networks, particularly
when provided with high-resolution images and validated biopsy labels, demonstrate
effectiveness comparable to skilled dermatologists. However, performance diminishes
significantly when models are tested on diverse devices, skin types, or lesion types.
Clinical photograph systems, while less accurate, offer advantages in scalable triage and
teledermatology. Histopathological models produce robust confirmatory results;
however, they face obstacles including inadequate supervision, variability in staining,
and substantial computational demands. Common issues across these modalities include
dataset bias, underrepresentation of darker skin tones and benign lesions, noisy ground
truth, and poor integration into clinical workflows. The authors put forward a three-tier
framework to get the medical field ready for Al They suggest using it in primary care to
screen for lesions, as a decision-support tool in dermoscopy, and as a computational
biomarker in digital pathology. Future developments will hinge on creating
representative datasets, advancing training techniques, ensuring interpretability, long
term monitoring of lesions, and achieving regulatory validation. Ultimately, mature Al
systems are anticipated to act as diagnostic collaborators rather than replacements for
clinicians, focusing on reducing unnecessary procedures, standardizing biopsy criteria,
and improving equity in skin cancer management.
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1. Introduction

Skin cancer is the most frequent type of cancer found around the world, and in many places, the number of cases
is continually rising. Melanoma is not extremely common, but it kills many people with skin cancer because it
spreads to other parts of the body rapidly. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are
more common; however, they aren't usually as fatal when treated right away. Recent global estimates suggest
that non-melanoma skin cancers affect several million individuals annually, while tens of thousands of new
melanoma cases are reported each year just in high-income countries (American Cancer Society, 2024; WHO,
2024). The survival rate for early-stage melanoma exceeds 95%; however, the prognosis markedly declines with
a delayed diagnosis (Salinas et al., 2024). The primary clinical challenge is not the lack of suitable treatment but
the failure to consistently and swiftly detect high-risk lesions.

There are several reasons why diagnostic delays develop, and they depend on the situation. In low-resource
settings, limited access to dermatologists, lengthy referral processes, and insufficient biopsy facilities lead to
many patients initially presenting with severe disease. In more affluent health systems, the issue is distinct: there
exists a prevalence of benign lesions, considerable discord among observers regarding their visual assessment,
and significant ambiguity when lesions reside in diagnostic gray zones, such as early melanoma versus atypical
or dysplasticnevi (Liu et al., 2023; Akhter et al., 2025). Dermoscopy has made it easier to find subsurface features
and unique pigment patterns, but even experienced doctors still misclassify many lesions, especially when they

are busy or have many patients to see.

Some people believe that Al, especially deep learning, could be valuable in these situations. Convolutional
neural networks (CNNs) can learn hierarchical representations directly from large collections of images. This
means they don't have to do manual feature engineering and can employ subtle, high-dimensional cues that are
difficult for individuals to put into words. Leading benchmark studies demonstrate that CNNs can attain or
exceed dermatologist-level performance in melanoma classification when trained on rigorously curated
dermoscopic datasets with biopsy-validated labels (Esteva et al., 2017; Brinker et al., 2019). These results have
generated considerable research interest in Al-assisted pipelines that include lesion detection, segmentation,

classification, and risk stratification.

But people become so enthused about headline accuracy figures that they forget that most models are built in
scenarios that are far different from how things really work. Algorithms typically perform less effectively when
presented with images of new institutions, other technologies, or a broader spectrum of individuals. Changes in
lighting, camera settings, resolution, lesion framing, and skin phototype, as well as changes in the types of
benign and malignant lesions, all make it difficult to generalize and cause domain shift (Goyal et al., 2020; Wu
et al.,, 2022). Additionally, many datasets are created from patients who have been pre-selected for expert
evaluation, leading to an overrepresentation of diagnostically complex or high-risk lesions and an
underrepresentation of common benign conditions. Such variation makes both training and testing less accurate,
which makes it seem like performance in the real world is better than it really is. Al research in skin cancer has
also grown beyond dermoscopy. There are three main imaging contexts that are common in the literature right

now. First, clinical photos are the first thing patients see when they come into contact with the health system.
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These images are usually captured with mobile phones or normal digital cameras. These photos are diverse from
one another, noisy, and usually feature more than one lesion or a background structure that is challenging to
understand. But they are highly useful for scalable triage and teledermatology. Second, dermoscopic images
provide ordered, high-contrast representations of lesion anatomy and have become the primary basis for Al
studies claiming dermatologist-level performance (Tschandl et al.,, 2019b; Shetty et al., 2022). Third,
histopathological whole-slide images are the best way to tell if a tumor is cancerous, but they are difficult to
work with because they are so big (gigapixels), the labels are not obvious, and different labs use different
methods for staining and scanning (Liopyris et al., 2022; Melarkode et al., 2023). Because of this, each modality
is at a different point in the diagnostic process and needs distinct techniques to model, validate, and combine.

Even while the literature is developing swiftly, there is still not much agreement on how to look at the
information as a whole in terms of being ready for real clinical situations. Many assessments summarize model
architectures and performance measures but inadequately address dataset bias, ground-truth integrity, external
validation, or practical workflow constraints (Mukherjee Behara et al., 2024; Martinez-Vargas et al., 2025).
Some people only care about dermoscopy and don't consider the wider picture of digital pathology and clinical
photography. For clinicians and policymakers, the pertinent questions are not “Can Al compete with experts on
a test set?” but rather “In what circumstances does Al enhance patient care?”, “At which stages of the care
pathway is AI most beneficial?”, and “How can we ensure these tools do not exacerbate existing disparities,

particularly for marginalized skin types and health systems?”

This review tackles these shortcomings by scrutinizing various Al types and their applications in the context of
skin cancer diagnosis. To start, we look at Al systems that use clinical photographs, dermoscopic pictures, and
histological slides. We examine how the data's quality, labeling, and task setup affect the system's ability to
identify issues. Second, we generated a list of cross-cutting issues, such as dataset bias, class imbalance, not
enough skin tone variability, noisy labeling, domain shift, limited explainability, privacy issues, and difficulty
with integrating workflows. Third, we discuss new technical and organizational ideas that could help the field
advance beyond proof-of-concept models to tools that can be utilized in real life. Some of them are federated
learning, domain-generalization strategies, self-supervised pretraining, and interpretability frameworks (Team,
Scientific Data Curation, 2021; Li et al., 2022; Gohil & Desai, 2024).

To ground this discussion in clinical reality, we propose a three-tier clinical readiness framework that delineates
the specific roles Al can assume in skin cancer care: (i) autonomous suspicion screening in community and
primary care utilizing clinical photographs, (ii) high-specificity decision support during dermoscopic evaluation
prior to biopsy, and (iii) computational biomarker extraction from histopathology for diagnostic validation and
prognostic enhancement. Putting current evidence into this layered structure makes it easier to honestly assess
what Al can and can't do right now, where it is most likely to have an effect, and which research areas are most
important if Al is to make a real difference in skin cancer by finding it earlier, reducing overtreatment, and

making outcomes fairer.
2. Al-Based Imaging and Diagnostic Methods for Skin Cancer

Artificial intelligence systems developed for skin cancer diagnosis have diverse behaviors contingent upon the
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imaging modalities employed during their training. Therapeutic photographs, dermoscopic images, and
histopathological whole-slide scans create distinct visual conditions that influence model performance, alter
annotation reliability, and determine therapeutic utility (Tschand]l et al., 2019b; Shetty et al., 2022). People have
had great hopes for these systems because they have often been regarded as equivalent. A realistic evaluation
must, therefore, assess modality-specific performance and its alignment with genuine therapeutic pathways.

This phase puts together the evidence while retaining the key framework that a high-impact review need.
2.1 AI on Dermoscopic Images: Great Performance When There Are Limits

Dermoscopy offers you pictures that are bigger, polarized, and arranged in a way that assists convolutional
structures a lot. These pictures have diagnostic traits such as pigment networks, streaks, regression zones, and
vascular patterns. This feature enables deep neural networks to extract hierarchical representations that are
closely associated with melanoma risk (Winkler et al., 2023). Initial seminal studies indicated that deep learning
could perform comparably to or beyond dermatologists on standardized dermoscopic datasets (Haenssle et al.,
2018; Brinker et al., 2019). Al is frequently quite sensitive in these controlled circumstances and often does better

than doctors at being specific, which means fewer unnecessary biopsies.

However, this strength primarily stems from the quality of the dermoscopic datasets, not their actual strength.
Public datasets such as ISIC and HAM10000 contain lesions that are more diagnostically intriguing than
common benign ones. Most of the patients they see have lighter skin types, and they take pictures in the most
prestigious locations (Goyal et al., 2020; Santoro, 2023). Models trained on these datasets perform markedly
worse when exposed to unfamiliar devices, institutions, demographics, or lighting conditions. Figure 1
illustrates the variety of dermoscopic lesion categories typically present in study datasets.
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Figure 1: Different categories of dermoscopic skin lesions (Adopted from Shetty et al., 2022).
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The structured detail evident in figure 1 explains why dermoscopy-based Al performs strongly in controlled
environments yet becomes fragile under domain shift. Similarly, figure 02, adopted from Goyal et al. (2020),
shows an ensemble CNN interpretation for lesion categorization, highlighting how model predictions rely on
high-quality, centrally framed dermoscopic fields.
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Figure 2: Skin lesion categorization using an ensemble CNN technique (Adopted from Goyal et al., 2020).

Although dermoscopy provides the richest visual substrate for training, its clinical readiness is limited by dataset
bias and poor generalization. This places dermoscopic Al within the category of diagnostic refinement tools,

useful once a lesion has already reached specialist evaluation but not reliable enough for autonomous diagnosis.

Table 1: Major Publicly Used Image Datasets in Al-Based Dermatology Research.

Dataset Approximate Primary label Predominant  skin ..
) Key characteristics and notes
hame 1image count source types represented

Largest open dermoscopic repository;

33,000
ISIC ) Expert review plus Mostly Fitzpatrick I- benchmark for many CNN studies;
) dermoscopic . . ]
Archive ] biopsy for subsets III substantially biased toward
images

& suspicious lesions (Goyal et al., 2020).
i Mostly lighter Frequently used for multiclass lesion

~10,015 Histology,

. ) . phototypes,  small classification; better class balance than
HAM10000 dermoscopic confocal imaging

) non-Caucasian older sets but still limited diversity in
images and follow-up . .
fraction skin tone (Mendonga et al., 2013).
PH2 200 dermoscopic _. . Limited range of skin gmal] high-quality dataset with very
. Biopsy-verified ’
Dataset mmages types reliable labels; mainly used for
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Dataset Approximate Primary label Predominant  skin . .
. Key characteristics and notes
hame image count source types represented
segmentation and calibration work
(Mendonga et al., 2013).
Includes multiple benign and
~1,300 clinical ] ) ] malignant classes; useful for model
. . Dermatologist Predominantly light ) )
Dermofit and dermoscopic i ) calibration but relatively small and
) visual diagnosis ~ phototypes )
images geographically narrow (DERMOFIT,
n.d.).
Institution-specific ~ dataset ~ with
~17,000+ ) . strong histologic confirmation;
Asan ) > 12,000 biopsy- Largely Asian ) .
dermoscopic ] ] ) valuable for assessing generalization
Dataset ) confirmed lesions population
images to non-European cohorts (Han et al.,

2018; Goyal et al., 2020).

2.2 Al on Clinical Photographs: Broader Reach, Lower Predictive Precision

Clinical photographs show how patients first see the healthcare system. These photographs were taken with
smartphones or regular cameras in places where the lighting isn't always adequate. The quality and backdrops
are different, and they show hair, freckles, inflammation, and other things that take away from the picture.
Lesions often only cover a small part of the frame. In these cases, Al must first identify the lesion before putting
it into a category. When full-frame pictures are used without segmentation, models often mistake background
textures for diagnostic signs, which leads to inconsistent results. The use of segmentation or adaptive cropping

greatly improves how well categorization works (Gessert et al., 2020).

Clinical-image databases demonstrate markedly greater diversity compared to dermoscopic archives, including
a wide range of benign and non-neoplastic dermatological conditions. This unpredictability increases the false-
positive rate for melanoma classification, especially when models are mostly trained on dermoscopic datasets
that focus on melanoma. Despite their shortcomings, clinical-image Al algorithms are essential for real-world
triage. Future primary-care assessments show that Al-assisted screening cuts down on unnecessary referrals
and accelerates the process of finding high-risk cases (Giavina-Bianchi et al., 2021).

Table 2: Summary of Al Performance Across Imaging Modalities

Most
Imaging Typical input Data . o .
) ) Main strengths Main limitations appropriate
modality source resolution .
clinical role
Clinical Smartphone or Low to Very accessible; High noise; Early suspicion
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Most
Imaging Typical input Data . R .
) ) Main strengths Main limitations appropriate
modality source resolution O
clinical role
photographs ~ consumer medium  supports background clutter; screening  and
camera images teledermatology and strong device and triage in
large-scale triage; lighting  variability; community and
cheap to collect broad mix of benign primary-care
conditions settings
Dataset bias; over- Diagnostic
) Highly discriminative representation of refinement and
Polarized, o ) ] o
) o ) morphology; best suspicious  lesions; biopsy decision
Dermoscopic magnified Medium to ] .
) ) benchmark poor representation support in
images dermatoscope  high . o
) performance; strong of  darker  skin; specialist
images
8 feature richness domain shift across dermatology
centers clinics
Definitive ground Weak supervision at
o truth; fine-grained slide level; severe
Digitized ) )
) ] ~_ cellular and stain/device
Histopathology histopathology Very high ) ) o )
) ] ) architectural  detail; variability; high
whole slides (WSI) from (gigapixel) . .
potential for computational
scanners L
quantitative burden;
biomarkers reproducibility issues

Clinical photographs therefore provide accessibility rather than high diagnostic precision. Their most realistic
clinical role aligns with early-stage triage, allowing clinicians to determine which lesions warrant dermoscopic
evaluation or urgent referral. This shift from diagnostic ambition to triage utility is consistent with current
evidence (Team, 2020; Mukherjee et al., 2025).

2.3 Histopathology-Based AI: Definitive Ground Truth with Gigapixel Complexity

Histopathology is still the greatest way to detect if someone has melanoma, but it's also the toughest thing for
Al to perform. Whole-slide images (WSIs) are too enormous to look at all at once; therefore, they need to be
broken up into smaller pieces. Weak monitoring makes matters considerably difficult because slide-level labels
are used even when only a small part of the tissue is malignant. Contemporary models employ multiple-instance
learning and attention mechanisms to ascertain the presence of diagnostic signals within patches (Melarkode et
al., 2023).

When employed in a single lab, Al based on histopathology shows a lot of potential for discovering tumor nests,
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mitotic activity, and architectural problems. But even small changes to the chemical used for staining, the
thickness of the slides, or the technology used for scanning can cause a lot of domain drift. Models trained in
one place don't always work well when used outside of that place, unless strong stain-normalization methods

or domain-adaptation methods are used (Li et al., 2022).

Histopathology Al should be viewed as an additional analytical layer that validates existing knowledge among
pathologists, rather than a substitute for their clinical expertise. The clinical pathway should position it at the
confirming end of the diagnostic spectrum, where adherence to regulations, the ability to repeat tests, and the

comprehension of results are all crucial aspects.
2.4 Integrating Modality-Specific Al into a Unified Diagnostic Pathway

The three types of imagery work together to create a layered Al landscape. Clinical photographs are easy to
access to, but they don't always provide accurate predictions. Dermoscopy presents organized morphological
data that makes it easier to classify things in controlled settings. Histopathology presents clear ground truth, but
it can be problematic for Al systems because of staining variability and gigapixel complexity. Your charts and

graphs make it obvious that there is a big difference between the two methods of imaging.
3. Major Challenges and Limitations in AI-Based Skin Cancer Diagnosis

Even though they are becoming better quickly and often say they are as competent as dermatologists, Al systems
for diagnosing skin cancer still have difficulties with their structure, methods, and use that make them less
dependable in real life. Many of the best results come from datasets and evaluation methods that are too limited
and don't represent how varied and difficult real clinical settings are. As a result, there is still a big difference
between benchmark performance and actual clinical readiness. Understanding these limitations is essential for
evaluating present results and guiding future research that authentically meets clinical needs rather than merely

technical convenience (Tschandl et al., 2019a).
3.1 Dataset Bias, Class Imbalance, and Insufficient Skin Tone Diversity

A primary challenge in dermatologic Al is the intrinsic bias found in publicly available datasets. ISIC and
HAM10000 contain too many lesions that look strange or suspicious since most of the samples come from tertiary
dermatological centers, where patients travel after an early stage of clinical triage. Such bias makes the case
spectrum look weird because there are a lot more melanomas and other high-risk lesions than there are in typical
practice. Models trained on such data inevitably learn decision limits that are overly tuned for differentiating
between high-risk lesions rather than properly detecting the substantially broader spectrum of benign diseases

encountered in typical settings (Gajjar et al., 2025).

People are increasingly acknowledging another drawback: the scarcity of diverse skin phototypes. Fitzpatrick
skin types I-III make up the majority of datasets. This means that models don't work well on skin tones that are
darker. Lesions on darker skin show different contrast properties, pigment distribution, erythema visibility, and
backdrop texture, all of which make it harder to categorize them. Numerous studies have documented
reductions in accuracy and sensitivity exceeding ten to fifteen percentage points when models are evaluated
using images from populations not included in the training set (Tiva et al., 2025a). This inconsistency not only
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undermines clinical reliability but also threatens to worsen existing imbalances, particularly for areas already

facing delayed diagnoses and institutional barriers to dermatologic care.
3.2 Noisy Labels, Weak Ground Truth, and Intrinsic Diagnostic Ambiguity

The quality of the labels used to train an Al system is what makes it trustworthy. In dermatology, many image
databases rely on professional visual interpretation instead of biopsy-confirmed diagnoses. Even among
experienced dermatologists, differences between observers are common, especially for borderline lesions like
early melanoma, dysplastic nevi, and collision tumors. Research indicates that disagreement rates for certain
cases are between 15% and 25%, which means that AI models trained on these labels learn how people make

mistakes instead of a solid diagnostic truth (Liopyris et al., 2022).

Histopathology is much worse off when there is insufficient oversight. Whole-slide images are given one
diagnostic label, yet the tumor areas may only represent a minor part of the tissue. When each tile obtains the
slide-level label, the model has to determine which areas fit the pathological signal. This situation causes the
forecasts at the patch level to be unstable. This can result in models that appear proficient in slide-level
categorization yet fail to comprehend essential clinical factors such as tumor edges, architectural disarray, or
mitotic activity (Melarkode et al., 2023). The absence of uniform pixel-level annotation limits the interpretability

and overall clinical reliability of these systems.
3.3 Failure to Generalize and Weak External Validation

One of the main issues with Al research in dermatology is that models always fare worse when they are
evaluated on data sets that are not their own. A lot of research looks at models by splitting one dataset into
training and testing groups. This keeps the imaging conditions, lesion spectrum, and device properties the same
across these groups without meaning to. This results in performance metrics that appear satisfactory but
deteriorate upon the inclusion of additional center images. Many external validation studies show that using
model predictions in real clinical contexts leads to big drops in sensitivity, specificity, and area-under-curve
values (Wu et al., 2022).

Generalization failure occurs due to various factors, including differences in camera sensors, dermatoscope
characteristics, lighting conditions, color calibration, anatomical locations, and patient demographics. In actual
practice, lesions are often only partially visible, not well defined, or surrounded by other tissues like hair or
inflammation. In these uncontrolled conditions, dermatologists generally do better than the models, especially
when it comes to lesions that are challenging to diagnose. Regulatory bodies are hesitant to approve fully
autonomous diagnostic systems, and one of the key reasons is that Al is still vulnerable to domain shift (Salinas
et al., 2024).

3.4 Limited Explainability and Weak Clinical Trust

Usually, deep learning models produce probability scores without saying why. Saliency maps and gradient-
based representations attempt to delineate key regions; nevertheless, their outputs frequently lack consistency,
exhibit noise, or fail to correlate with clinically established dermoscopic patterns such as regression structures,
blue-whitish veils, or pigment networks. Doctors, especially dermatologists and pathologists, need adequate
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justifications for making judgments that could lead to a biopsy, surgery, or reassurance. Al systems that can't
explain things clearly make it challenging for doctors to do their jobs and the output of algorithms.

Researchers found that doctors typically don't pay attention to Al ideas when the reasons aren't obvious or when
the results don't match what they think (Giavina-Bianchi et al., 2021). In a field where medical and legal
accountability is quite high, skepticism of black-box forecasts is understandable. Al is still not used in healthcare

decision-making because its explanations are inadequate.
3.5 Privacy Issues, High Annotation Costs, and Data Fragmentation in Institutions

You need enormous, diversified, and well-annotated datasets to make strong AI models. But it takes a lot of time
and money to develop these kinds of databases. Clinical photographs need to be carefully chosen, dermoscopic
images need to be carefully labeled, and histopathology slides need to be carefully prepared and checked.
Privacy restrictions like HIPAA and GDPR make it extra tough for organizations to share data. This leads to

separate silos instead of unified databases that show the complete population.

Federated learning has emerged as a feasible approach by enabling model training across several locations
without the requirement of sharing raw data; nonetheless, its effectiveness is dependent on stringent
standardization of imaging methods, labeling conventions, and preprocessing workflows. Institutions rarely
share similar workflows, hence limiting the practical applicability of federated approaches (Melarkode et al.,
2023). Al systems are still limited to becoming instruments that only work in certain institutions, not diagnostic

companions that everyone can utilize without a lot of standardized data.
3.6 Workflow Mismatch and Lack of Integration into Real Clinical Practice

Clinical contexts are complex decision-making processes that take into account a patient's medical history, the
course of lesions, other health problems, risk factors, imaging, and the doctor's gut feeling. Most Al systems just
look at one picture at a time and don't consider other things that could change the diagnosis. Al outputs
frequently function as additional second opinions rather than contributing significantly to the diagnostic
process. Dermatologists frequently disregard recommendations when the outcomes are illogical or when their
incorporation into electronic health records becomes challenging (Liopyris et al., 2022). People probably won't
use Al technologies that make it difficult to think, get in the way of work, or add steps that aren't necessary. Al

should simplify clinical reasoning and documentation, not complicate them, to enable their effective integration.
3.7 Computational Burden and Hardware Limitations

Lastly, adopting this technology remains challenging due to various technological issues. It is extremely difficult
to apply histopathology models in regions with few resources since they demand powerful GPUs and a lot of
storage space to process gigapixel slides. Clinical-photo models, on the other hand, need to function with light
technologies like cellphones. This means that the models can't be too intricate and may not be as precise.
Different camera qualities, compression methods, and image resolutions make things even less stable (Li et al.,
2022). In many low- and middle-income countries, the challenges get worse when imaging tools and network
connections aren't always available. This makes the gap between experimental results and real-world viability
much worse. As long as the quality of the hardware is closely related to how well the Al system can make
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diagnoses, it will be impossible for Al systems to work equitably in different healthcare settings.
4. Future Opportunities for Artificial Intelligence in Skin Cancer Diagnosis

The growing study on artificial intelligence for skin cancer diagnosis shows that while there are some great
technical advances, there are also big problems in making them work in the real world. To go from high-
performance prototypes to clinically reliable systems, we need to change the way we train, test, integrate, and
monitor models. Even while existing algorithms can reach expert-level accuracy in controlled settings, Al
systems will only be truly useful in clinical settings when they can handle variability, explain their rationale
clearly, treat all groups fairly, and be integrated into diagnostic workflows. To comprehend the future prospects
for Al in dermatologic oncology, it is essential to view them not merely as incremental technical enhancements

but as integral to a comprehensive shift towards clinically informed design.

In the future, it's vital to create large datasets that represent the entire population. The absence of variation in
current datasets, including skin tone, lesion kind, imaging technology, or clinical situation, perpetuates the
challenge of generalization. Collaborations across multiple institutions, along with privacy-preserving methods
like federated learning, offer a viable way to create unified datasets without violating patient privacy. Federated
learning enables institutions to provide model updates instead of raw data; nonetheless, its efficacy is contingent
upon shared labeling techniques, uniform preprocessing pipelines, and defined imaging circumstances (Urbi et
al., 2021). When done right, these kinds of distributed data ecosystems could help eradicate biases that have

been around for a long time and make models that work well with a wide range of patients and imaging settings.

Another big chance is to design algorithms that focus on outward validity instead of optimizing for internal
benchmark results. Traditional supervised learning frequently falters in the face of domain transition,
necessitating innovative methodological strategies. Domain-generalization techniques, adversarial variance
reduction, style-transfer augmentation, and self-supervised representation learning offer intriguing avenues for
developing models that exhibit reduced sensitivity to lighting conditions, device variability, and background
noise (Wu et al., 2022; Tiva al., 2025a). Transformer-based architectures, which use global receptive fields instead
of just local ones, might make stability even better when lesions show up in places that aren't in the center or
when there is a lot of background noise. These methods focus on resilience instead of pure accuracy, which

shows a move toward models that can handle the volatility of real-world clinical imaging.

Explainability will also be a key factor in whether Al becomes a trusted diagnostic partner. Current saliency-
based explanations frequently lack the precision or stability required to meet therapeutic standards. Future
systems must produce outputs that are both interpretable and therapeutically significant, such as emphasizing
specific dermoscopic structures like pigment networks, streaks, or regression zones, or distinguishing
histopathologic traits such as mitotic figures and architectural anomalies. In prospective experiments, hybrid
human-Al interaction models that incorporate uncertainty estimations or confidence overlays with explanations
have been shown to enhance clinician trust and facilitate improved decision-making (Gajjar et al., 2022). For Al
to be accepted in dermatology and pathology, it needs to be able to reason in a way that is consistent, clear, and
anatomically correct with clinical heuristics. Adding time-based information to static photographs presents a
transformative opportunity. Clinicians regularly evaluate the progression of lesions throughout time, noting
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alterations in color, border geometry, and overall symmetry. Al systems that can look at long-term image
sequences could identify subtle changes that people miss, making it easier to detect malignant transformations
earlier. Adding patient metadata such as age, family history, immunologic status, or previous lesion history
should improve risk stratification and make predictions more in line with the fact that skin cancer risk is caused
by many things (Li et al., 2022, Tiva et al., 2025b). These multimodal systems might render more clinically

consistent evaluations than models that solely use images.

Histopathology is also a wonderful place for new ideas to grow. Improvements in multiple-instance learning,
attention-based aggregation, and graph neural networks are helping models identify both small cellular
problems and bigger patterns in architecture. These systems could develop into instruments that facilitate tumor
staging, margin evaluation, or the determination of prognostic indicators, including Breslow thickness and
mitotic density (Gessert et al., 2020). Histopathology AI may eventually go beyond just making diagnoses to
help with prognosis, treatment planning, and making individualized decisions about treatment. To succeed in
this field, staining techniques must be standardized and validated by multiple institutions, and models that

work in all lab settings must be created.

Simultaneously, deployment-focused AI presents prospects for influence across diverse healthcare
environments. Smartphone-based triage solutions may be most useful in places where there aren't many
dermatological specialists and resources are limited. Initial research indicates that Al-enhanced teledermatology
systems can expedite referrals for high-risk lesions and diminish superfluous clinic visits (Urbi et al., 2025). In
urban hospitals, AI might be an internal quality-control layer that lowers the difference between observers or
finds lesions that were missed during busy clinical operations. In digital pathology, algorithms can assist
pathologists in finding areas of interest more quickly, which can help them stay awake and make more accurate
diagnoses. In the end, the best chance for progress is not to make self-sufficient diagnostic systems but to create
long-lasting partnerships between humans and Al in the clinic. Dermatology and pathology are interpretive
disciplines that necessitate the integration of pattern recognition with clinical judgment, patient history, and
contextual knowledge. Al systems that enhance human expertise by standardizing thresholds, quantifying risk,
emphasizing pertinent structures, or delivering consistent second readings are significantly more likely to be
embraced than those intended to supplant physicians. As technical and organizational advancements increase,
Al is set to evolve into a structured decision-support collaborator rather than a standalone adjudicator of
malignancy (Sazzad et al., 2025). To make this vision a reality, we need to keep working on having a variety of
training data, strict cross-institutional validation, clinically useful interpretability, open reporting of biases, and
integration methodologies that take into account how clinical work actually works. It is also important to ensure
that Al is used fairly so that it improves results for everyone instead of making existing differences worse. If
these chances are taken advantage of in a planned way, Al can go from being an intriguing experimental tool to
a dependable and morally sound part of global skin cancer therapy.

5. Conclusion

Artificial intelligence has made great strides in dermatologic oncology, showing that deep learning models can

match or even beat expert performance in very controlled, limited settings. These accomplishments, especially
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in dermoscopic imaging, validate that Al can discern diagnostically significant patterns from cutaneous lesions
with a granularity that enhances human sensibility. The evidence from different imaging methods shows that
outstanding accuracy on curated datasets does not mean that the system is ready for clinical use in general.
Variations in equipment, skin tones, acquisition settings, and lesion epidemiology consistently cause models to
deteriorate when tested in real-world scenarios. This means that lab and clinic result still differ greatly.
Dermoscopy-based models are still the best at technical tasks, but they can't diagnose on their own because they
use biased datasets and are sensitive to changes in the domain. Clinical-photograph Al algorithms, albeit less
precise, provide considerable public health benefits by facilitating scaled triage and the prompt identification of
high-risk cases in environments with little dermatological expertise. Al that focuses on histopathology and is
backed by whole-slide imaging and more advanced architectures shows outstanding internal performance, but
it is still limited by insufficient supervision, staining variability, and unmet needs for cross-institutional
reproducibility. In all modalities, biased representation, lack of skin tone variety, noisy ground truth, limits on
how simple it is to understand, and workflow misalignment still make it difficult to use these tools in everyday

clinical practice.

Even with these problems, current research indicates that there is a way to meaningful integration in the future.
Improvements in federated learning, domain generalization, and self-supervised representation learning could
lead to models that stay stable across different groups of people and imaging settings. Parallel attempts to
improve explainability, combine data from different sources, record how lesions change over time, and create
stain-invariant histopathology models are breaking down long-standing barriers to clinician trust and
regulatory acceptability. As these improvements develop, Al is becoming less of a replacement for
dermatologists or pathologists and more of a structured decision-support tool that improves consistency, cuts
down on unnecessary tests, and makes it easier for more people to undergo early evaluations. In its clinically
advanced state, Al is expected to function across three tiers of the diagnostic continuum: scalable suspicion
screening utilizing clinical photographs at the community interface, diagnostic enhancement via dermoscopic
assessment in specialized environments, and confirmatory and prognostic enhancement within digital
pathology processes. This kind of stratified model makes sure that Al helps rather than hinders in the way of
clinical thinking and that its benefits correspond with the strengths and weaknesses of each imaging method.
To make this vision a reality, we will need to keep working on making datasets more diverse, open, and
validated by outside sources. Additionally, we must ensure their equitable use and alignment with authentic
clinical workflows. If these prerequisites are met, Al-enabled diagnostic systems could significantly increase the
early identification of melanoma, lessen worldwide inequalities in dermatologic treatment, and improve the

accuracy and consistency of skin cancer diagnostic decision-making.
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