
 

 

 

 

Journal homepage: https://pathfinderpub.com/index.php/pathfinder-of-research 

 
Pathfinder of Research 

 
 

ISSN (3007-3863), Vol. 2, Issue 3, December 2024  

 

Original Research 

Advancing Fish Farming Through Deep Learning: Applications, 

Opportunities, Challenges, and Future Directions 
 

Bayazid Hossain 1, Atiqur Rahman Sunny 2*, Md. Mahfujur Rahman Nayeem Gazi 3, Anna 

Rani Das 4, Roby Mohajon 1, Talha Haque Miah 1, Md Nasir Uddin Rana 5 

 
1 Department of Electrical and Electronic Engineering, Barishal Engineering College, Barishal-8202, Bangladesh 
2 Pathfinder Research & Consultancy Center, USA 
3 Department of Electrical and Electronic Engineering, Islamic University, Kushtia 7003, Bangladesh. 
4Department of Fisheries, Bogura, Bangladesh 
5 Department of Computer Science, Monroe University, New Rochelle, New York, USA 

 

* Corresponding author: atiksunny@yahoo.com  

https://doi.org/10.69937/pf.por.2.3.39 

 

 

1. Introduction 

Aquaculture is a vital sector for global food security, providing a sustainable response to the rising 

demand for seafood while reducing strain on wild fish stocks. Conventional fish farming systems 

frequently encounter obstacles, such as inefficiencies, many disease outbreaks, and environmental 
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 Deep learning (DL) has changed aquaculture by offering automated solutions for species 

identification, health assessment, biomass calculation, feeding optimization, and water 

quality forecasting. Conventional aquaculture encounters obstacles like ineffective 

resource management, disease epidemics, and environmental deterioration; 

nevertheless, deep learning applications provide intelligent decision-making skills that 

improve sustainability and economic feasibility. This study carefully looks at 41 peer-

reviewed papers from 2015 to 2024 to find out how useful deep learning is in 

aquaculture. It focuses on main AI models such as convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), and generative adversarial networks 

(GANs). The results indicate that AI-driven solutions boost fish health evaluations, 

optimize feeding strategies, and improve water quality monitoring, hence minimizing 

waste and augmenting production efficiency. Nonetheless, obstacles like substantial 

computing demands, dataset restrictions, and regulatory limits impede extensive 

implementation. Comparative assessments demonstrate that deep learning models 

surpass conventional aquaculture methods in precision and prediction efficacy. In the 

future, researchers should investigate new AI technologies like federated learning, edge 

computing, and AI-integrated robotics to make deep learning easier to use and more 

scalable for aquaculture applications. By surmounting these obstacles and utilizing 

advanced AI technology, aquaculture may evolve into a more sustainable, efficient, and 

intelligent sector. 
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issues. The implementation of sophisticated artificial intelligence (AI), particularly deep learning 

(DL) technologies, has significantly enhanced the potential for intelligent aquaculture. Employing 

these strategies, automated data-driven insights improve monitoring, management, and decision-

making processes (Liakos et al., 2018). Deep learning (DL) is a subset of machine learning. Deep 

learning utilized neural networks, including many layers. These layers facilitate models that handle 

extensive and intricate information, extracting significant patterns from photos, videos, and sensor 

data. In aquaculture, DL is used to identify species, check on fish health, study behavior, automate 

feeding, estimate biomass, keep an eye on water quality, and set up robotic systems that can work 

on their own. All these things improve sustainability and economic viability (Najafabadi et al., 

2015). By utilizing AI driven solutions, aqua culturists may improve production, promote fish 

health, decrease financial losses through reduced maintenance costs, and optimize resource 

management for long-term sustainability in the business. 

 

The rapid depletion of the world's fish supply owing to overfishing and climate change has 

prompted a transition toward sustainable aquaculture (Melnychuk et al., 2017; Alam et al., 2023). 

Despite its potential to meet increasing seafood demands, conventional aquaculture has several 

obstacles, including excessive feed consumption, poor water quality management, and heightened 

disease vulnerability, resulting in financial losses and environmental damage. Sustainable 

aquaculture aims to address these difficulties by employing effective resource utilization 

techniques, eliminating waste, and decreasing the environmental impact of fish farming operations 

(Rahman et al., 2024). Deep learning significantly enhances sustainable aquaculture methods 

through the implementation of sophisticated monitoring and predictive analytics. Utilizing AI and 

deep learning technology for picture and video identification may identify fish behavior, 

immediately detect diseases, and improve feeding schedules, therefore reducing feed waste and 

enhancing fish health. Furthermore, predictive deep learning models provide real-time 

environmental assessments, enabling fish cultivators to anticipate risks and implement preventive 

measures, thus enhancing long-term sustainability (Thrall et al., 2018; Sunny et al., 2018). 

 

The effective integration of deep learning technology in aquaculture has transformed the sector by 

enhancing real-time monitoring, autonomous decision-making, and precise predictive modeling. 

Deep learning technologies, like Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), are used a lot in aquaculture to sort fish into groups based on their behavior 

and check on their health (Sun et al., 2018). Moreover, IoT-based deep learning models have the 

capability for continuous water quality monitoring, hence providing ideal aquatic conditions for 

sustainable fish maintenance (Hu et al., 2015). In aquaculture, AI-driven automated feeding 

systems represent the primary application of deep learning technology. Deep learning models 

assess fish movement patterns and eating behaviors to ascertain the ideal quantity and time of feed, 

minimizing overfeeding, averting water pollution, and enhancing feed conversion efficiency 

(Saberioon et al., 2017). Furthermore, sophisticated technologies such as transfer learning and 

Generative Adversarial Networks (GANs) are assisting in enhancing the flexibility of deep 
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learning models for diverse fish species and aquaculture situations (Ashakin et al., 2024).  

2. Research Methodology   

 

2.1 Synthesis and Curation of Literature 

 

A thorough literature search was performed across several academic databases, including Web of 

Science, Scopus, IEEE Xplore, SpringerLink, and Google Scholar, to collect peer-reviewed 

papers, conference proceedings, and technical reports published from 2015 to 2024. Keywords 

including deep learning in aquaculture, intelligent fish farming, machine learning in fisheries, 

and AI in sustainable aquaculture were employed to guarantee focused retrieval. The criteria for 

selection included studies that looked at deep learning applications in aquaculture, such as 

identifying species, monitoring health, estimating biomass, feeding optimization, and predicting 

water quality (Liakos et al., 2018; Najafabadi et al., 2015). We only considered publications 

published in indexed journals (Q1-Q3) or prestigious conferences, excluding research lacking in 

technical rigor or experimental validation. 

2.2 Thematic Analysis and Categorization 

The research that was looked at broke down into six main uses of deep learning in aquaculture: 

identifying live fish, identifying species, studying behavior, estimating size and biomass, making 

decisions about what to feed, and predicting water quality. Deep learning models like 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative 

adversarial networks (GANs) were used in each category, along with data sources like image 

datasets, sensor data, and IoT-based monitoring systems (Saberioon et al., 2017). The efficacy 

of these models was evaluated using accuracy, precision, recall, mean squared error (MSE), and 

root mean square error (RMSE) (Sun et al., 2018). 

2.3 Comparative Assessment and Performance Evaluation 

To find out how useful deep learning models are, they were compared based on how well they 

classify things, how quickly they can be computed, how well they can be scaled, and how well 

they can be used in real life. A comparison was made between traditional fish farming practices 

and AI-driven alternatives, emphasizing the benefits in decision-making, early illness diagnosis, 

and resource management (Rahman et al., 2024). The study looked at how better AI models 

were at classifying images and making predictions compared to more traditional image 

processing and machine learning methods. 

2.4 Challenges and Prospective Pathways 

This review found big issues with using deep learning in aquaculture, like high computing costs, 

limited datasets, and problems with how well models work in different aquatic settings (Zhou et 

al., 2018). Regulatory issues, including data privacy and security in AI-driven aquaculture, were 

addressed, alongside the necessity for defined standards for AI integration in fish farming. In the 

future, researchers will focus on improving the efficiency of AI models through federated 
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learning, processing in real time through edge computing, and putting AI into robotic systems to 

run aquaculture operations automatically (Hu et al., 2015). By tackling these difficulties, deep 

learning can substantially improve sustainable fish farming and aquaculture management. 

3. Results and Discussion 

3.Concepts of Deep Learning 

3.1 Terminology and Concepts in Deep Learning 

In conjunction with big data and high-performance computing, machine learning (ML) has 

facilitated novel approaches for interpreting, measuring, and understanding data-intensive 

processes. Machine Learning (ML) is a scientific field focused on empowering machines to learn 

autonomously without much programming (Samuel 1959; Uriondo et al. 2024). Deng and Yu 

(2014) assert that deep learning is a subset of machine learning and a representation learning 

technique based on artificial neural networks. Deep learning (DL) is a subset of machine learning 

applicable to many artificial intelligence applications, albeit not universally (Goodfellow et al., 

2016; Saufi et al., 2019). 

Deep learning addresses the core challenge of representation learning by enabling computers to 

formulate intricate concepts from simpler components (LeCun et al., 2015; Bronstein et al., 

2017). A deep learning system might amalgamate fundamental concepts to represent the notion 

of a fish. The functions linking an item to a pixel array are rather complex. Direct programming 

appears incapable of learning or evaluating such a mapping. DL deconstructs this complex 

mapping into a hierarchical arrangement of simpler mappings to resolve this issue (DeFilippo et 

al., 2023). The exposed layer inputs data into a series of hidden layers that gradually extract 

abstract information. The first layer may swiftly ascertain if a certain pixel represents an edge by 

evaluating the luminance of adjacent pixels. The second concealed layer then identifies clusters 

of edges that resemble elongated forms and angles. The third hidden layer can identify a certain 

arrangement of corners and contours that represent a whole area of an object. Finally, it is feasible 

to distinguish the various objects (Zeiler & Fergus 2014; Goodfellow et al., 2016). 

3.2 Educational Models and Activities 

A deep learning strategy often involves a learning process aimed at acquiring "experience" from 

samples to facilitate task performance. Deep learning approaches into supervised learning and 

unsupervised learning. In supervised learning, labeled samples of inputs and their matching 

outputs are utilized to present data. The objective is to establish mapping rules from input to 

output. Two prevalent model designs are the recurrent neural network (RNN) and the 

convolutional neural network (CNN). Convolutional Neural Networks (CNNs), inspired by the 

human visual nervous system, excel in image processing (Litjens et al., 2017; Saufi et al., 2019; 

Uriondo et al., 2024), whereas Recurrent Neural Networks (RNNs) are proficient in handling 

sequential data. 

In unsupervised learning (Geoffrey & Hinton 1999), the model looks for patterns it hasn't seen 
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before in a dataset that hasn't been labeled. It does this without any help from a person. Generative 

adversarial networks (GANs) represent one of the most promising techniques for unsupervised 

learning. A GAN might be able to make good results by using reciprocal game learning between 

at least two framework modules, such as a discriminative model and a generative model. The 

early deep learning models established the basis for other improved or altered models, such as 

long short-term memory (LSTM) and region convolutional neural network (R-CNN) models. 

Deep learning employs end-to-end optimization to integrate feature learning and model 

development into a unified model. In traditional machine learning, each component is developed 

sequentially, with feature extraction and model creation executed individually. Unlike traditional 

machine learning, deep learning uses a deep hierarchical structure that lets function combinations 

model nonlinear relationships (Rubbens et al., 2023) instead of surface-level structures. The 

advantages of deep learning become increasingly evident when handling substantial volumes of 

data. Hierarchical learning and the extraction of different levels of complex data abstractions in 

deep learning make big data analytics tasks easier. This is especially true when working with 

large datasets, tagging data, retrieving information, or doing discriminative tasks like prediction 

and classification (Najafabadi et al., 2015). Hierarchical architectural learning systems have 

exhibited superior performance in several engineering applications (Poggio & Smale 2003; 

Mhaskar & Poggio 2016). In fisheries management, deep learning does inductive analysis, 

acquires information from samples, and finally formulates recommendations to inform 

management decisions. The primary issue with deep learning is hallucinations. Overfitting and 

overlearning are two additional modes of failure for neural networks. Moreover, by introducing 

little alterations to their inputs, neural networks may be misled into producing completely 

different outputs (Moosavi-Dezfooli et al., 2016; Belthangady & Royer 2019).  

3.3 Applications of Deep Learning in Intelligent Aquaculture 

This review includes forty-one publications on deep learning and intelligent aquaculture. The 

relevant applications may be categorized into six distinct areas: live fish identification, species 

classification, behavioral analysis, feeding decisions, size or biomass computation, and water 

quality prediction. Species taxonomy and live fish identification are the foremost domains. 

Notably, all of these papers three from 2016, three from 2017, twelve from 2018, fifteen from 

2019, and eight from 2020 (up to May 2020) were published in 2016 or subsequently. This 

indicates that deep learning has progressed rapidly since 2016. The bulk of papers employ image 

processing alongside sound identification and water quality forecasting. Moreover, a limited 

number of research studies investigate lobsters or other aquatic animals, despite the predominant 

focus of the bulk of publications on fish (Chowdhury et al., 2021). 

3.3.1 Identification of Living Fish 

The advancement of intelligent breeding management systems relies on the capacity to precisely 

and autonomously identify live fish, hence providing data support for enhanced production 

management. Machine vision enables long-term, nondestructive, noncontact observation at a low 

cost (Zhou et al., 2018b; Hartill et al., 2020). Nevertheless, the visuals seen in aquaculture 
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provide several challenges for image and video analysis. Light, noise, and water turbidity can 

significantly diminish image quality, resulting in reduced contrast and resolution (Zhou et al., 

2017a). Secondly, the behavior of fish may lead to distortions, deformations, occlusion, 

overlapping, and other adverse phenomena due to their status as uncontrolled targets that swim 

freely (Zhou et al., 2017b, Sunny et al., 2020). These difficulties adversely affect most current 

image analysis methodologies (Qin et al. 2016; Sun et al., 2018). 

Despite extensive research addressing the aforementioned issues, the predominant focus has been 

on the extraction of traditional low-level features, which generally encompass minute details in 

an image such as feature points, colors, textures, contours, and notable shapes (White et al., 

2006; Yao & Odobez 2007). Approaches reliant on these characteristics often yield suboptimal 

outcomes in practical applications. Deep learning (DL) employs multilevel data representations 

that vary from low to high levels. High-level features are derived from low-level features and 

include substantial semantic information that aids in the identification and detection of objects or 

targets inside an image. Convolutional neural networks often utilize both types of features: low-

level features are acquired by the initial layers, and high-level features are obtained by the end 

layers. The difficulties may be addressed by this technique (Zheng et al., 2017; Sun et al., 2018). 

Most people use deep learning to identify whether an object is a fish, making it easier to identify 

live fish (Sunny et al., 2021b; Rourke et al., 2022). Deep learning can serve as an effective 

machine vision solution in the contemporary era, characterized by the ease of collecting extensive 

visual data. To explore efficient and accurate methodologies, it is beneficial to examine the 

performance capabilities achievable through the integration of deep learning with machine vision. 

The principal disadvantage of deep learning is the requirement for a considerable amount of 

labeled training data, which demands significant work and time to obtain and annotate an 

adequate number of pictures. The caliber of the annotations and training samples influences the 

recognition outcome. 

3.3.2 Taxonomy of Species 

Approximately 33,000 distinct species of fish exist (Oosting et al., 2019, Chowdhury et al., 

2020). Species categorization facilitates aquaculture production management, yield forecasting, 

and ecosystem surveillance (Alcaraz et al., 2015; dos Santos & Gonçalves 2019). Visual 

attributes such as dimensions, morphology, and pigmentation are commonly employed to 

distinguish various fish species (Hu et al., 2012; dos Santos & Goncálves 2019). Precisely 

categorizing fish species is challenging due to differences in light intensity, fish movement, and 

morphological and pattern similarities among species. Deep learning models can acquire unique 

visual characteristics of species that are impervious to environmental changes and modifications. 

during the utilization of DL. An object detection module first generates many patch proposals for 

each frame F in an underwater video presented as an examination. We generate a label 

distribution vector by inputting each patch into the classifier. Sun et al. (2018) assert that the tags 

of these patches correspond to the highest likelihood. However, significant opportunities for 

enhancement in the precision of same-species classification persist due to various interferences 
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and restricted sample sizes. Classifying similar fish and those of the same species remains 

challenging, as most contemporary fish classification methods are designed to distinguish 

between specimens exhibiting significant variations in body size or morphology (dos Santos & 

Goncálves 2019; Sunny et al., 2021a). 

3.3.3 Behavioral Analysis 

Fish have various behavioral reactions to alterations in environmental circumstances due to their 

sensitivity to these changes (Flück et al., 2021). Moreover, behavior serves as a valuable 

indicator for both harvesting and fish well-being (Zion 2012). Relevant behavioral monitoring, 

especially for anomalous behaviors, can achieve a nondestructive comprehension and early 

warning of fish conditions (Rillahan et al., 2011). Real-time monitoring of fish behavior is 

essential for assessing their condition and informing feeding and capture strategies (Yu et al., 

2022). Fish show behavior through a series of temporally connected events that possess certain 

continuity. Images captured prior to and after the activity will no longer pertain to methods that 

discern it from an individual image. To effectively capture action significance, it is advisable to 

utilize time-series data from the preceding and subsequent frames in a movie. Deep learning 

algorithms exhibit significant proficiency in visual pattern identification. RNNs have the capacity 

to adeptly address the previously described problem, mostly because of their robust modeling 

proficiency for sequential data (Schmidhuber, 2015). According to Zhao et al. (2018a), they 

came up with a new way to use a recurrent neural network and an altered motion impact map to 

find, identify, and report any strange behaviors in a school of fish in intensive aquaculture. 

Obstructions to behavior analysis in fish classification via deep learning include crossing, 

overlapping, and blocking caused by free-swimming fish (Zhao et al., 2018a; Romero-Ferrero 

et al., 2019) and subpar environmental imagery (Zhou et al., 2019); thus, these challenges 

necessitate resolution in the future. 

3.3.4 Estimating Dimensions or Biomass 

In operating a fish farm, it is essential to continuously assess fish parameters such as abundance, 

number, size, and weight (Francá Albuquerque et al., 2019). Scientific fisheries management 

and conservation strategies for sustainable fish production rely on quantitative assessments of 

fish biomass (Melnychuk et al., 2017; Saberioon & Cısar 2018; Li et al., 2019). Fish exhibit 

sensitivity and navigate freely in surroundings characterized by fluctuating visibility, 

illumination, and stability, complicating the estimation of fish biomass without human 

intervention (Li et al., 2019). Recent applications of deep learning to fisheries research provide 

promising potential for large sampling in intelligent fish farming. Deep learning combined with 

machine vision can enhance the precision of assessing fish morphological characteristics such as 

length, breadth, weight, and area. Semi supervised and supervised applications are the 

predominant category of published applications (Marini et al., 2018). A vital element of fisheries 

assessment models is the age distribution of a fish school. We currently use a method that requires 

a lot of work and skill to figure out the age breakdown of fish schools. This method involves 

manually judging the age of otoliths. We can achieve target identification by predicting fish ages 
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from otolith photos using a pretrained convolutional neural network in a deep learning approach. 

The accuracy is markedly superior and comparable to that achieved by human experts (Moen et 

al., 2018). We routinely assess fish biomass using sonar and optical imaging techniques. A 

"daytime" image may be generated from a sonar image and a corresponding night vision camera 

image by employing a deep learning system to autonomously discern the conversion connection 

between sonar and optical images. This approach is effective for enumerating fish (Terayama et 

al., 2019). 

3.3.5 Decision-making regarding feeding 

Fish feeding levels in intensive aquaculture directly influence breeding costs and output 

efficiency (Chen et al., 2019). For some fish species, feed costs constitute more than 60% of total 

production expenditures (Wu et al., 2015; Føre et al., 2016; de Verdal et al., 2017). 

Consequently, overfeeding will diminish production efficiency, while insufficient feeding may 

adversely affect fish development. Excessive feeding not only diminishes feed conversion 

efficiency but also contaminates the environment with residual bait (Zhou et al., 2018a). 

Consequently, optimizing the feeding process can produce substantial cost advantages (Zhou et 

al., 2018c). Experience and fundamental time constraints have always significantly influenced 

feeding decisions (Liu et al., 2014b). Presently, image analysis has been the predominant 

emphasis of most research on utilizing deep learning for feeding judgments. A sophisticated 

feeding strategy that considers fish behavior may be developed using machine vision. By halting 

the feeding process at more appropriate intervals, such a system can conserve unnecessary labor 

and improve fish welfare (Zhou et al., 2018a; Qiao et al., 2021). Fish feeding may also be 

directed using a rudimentary classification system for feeding intensity. The parameters of fish 

feeding intensity may be accurately assessed by integrating CNN and machine vision (Zhou et 

al., 2019). The primary emphasis of the research was on images. Nonetheless, several factors 

affect fish eating (Sun et al., 2016); hence, dependence exclusively on pictures is insufficient. 

To enhance future feeding decisions, it is imperative to include more information, including 

environmental metrics and fish physiological data. 

3.3.6 Monitoring Water Quality 

To identify anomalous events, prevent disease, and mitigate related risks to fish, it is essential to 

predict fluctuations in water quality parameters (Hu et al., 2015; Rahman et al., 2024). The 

aquatic environment in real-world aquaculture is defined by several interrelated elements, 

rendering the prediction process very challenging (Liu et al., 2014a). Conventional machine 

learning prediction models exhibit a lack of resilience when applied to huge data, resulting in 

diminished generalizability and long-term modeling efficacy. Furthermore, they cannot precisely 

encapsulate the essential characteristics of the data (Ta & Wei 2018; Liu et al., 2019). 

Conversely, deep learning has robust nonlinear approximation, self-learning, and generalization 

capacities. Deep learning-based prediction methodologies have surged in prominence in recent 

years (Roux & Bengio, 2008). Nonetheless, only short-term water quality forecasts have 

demonstrated favorable results utilizing most contemporary methodologies. Recent years have 
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seen an increased focus on long-term projections among scholars (Ashakin et al., 2024). 

Establishing the spatiotemporal connections between water quality and external factors is crucial 

for long-term forecasting. As a result, spatiotemporal models such as RNNs and LSTM networks 

are highly favored (Hu et al., 2019). An attention-based RNN model is better at learning than 

other methods for both short- and long-term predictions of dissolved oxygen. It also makes a clear 

and useful representation of how time and space interact (Liu et al., 2019). These models may 

be perpetually enhanced during the forecasting process to augment their predictive accuracies 

(Deng et al., 2019). Time significantly influences the prediction of dissolved oxygen and other 

water quality parameters. Attention-enabled deep learning models, including LSTM, DBN, and 

others, can proficiently extract insights from temporal sequence data and yield commendable 

results. Consequently, a pivotal research focus for water quality prediction tasks will be the 

application of deep learning models to mitigate or reduce the adverse impacts of uncertainty 

factors on predictive results. 

3.4 Comprehensive Performance and Technical Specifications 

The two fundamental elements of AI are data and algorithms (Thrall et al. 2018). Each of these 

components is essential for the success of AI. 

3.4.1 The data 

An annotated data set is crucial to ensure a model's success in deep learning (Zhuang et al. 2019). 

Nonetheless, issues related to both quantity and quality often affect the generation of data sets 

(Ifty et al., 2024). Preparing images through preprocessing and/or augmentation typically 

requires effort before any photographs or specific attributes may serve as input to a deep learning 

model. Modifying the picture dimensions to conform to the requirements of the deep learning 

model used is the predominant preprocessing method (Siddiqui et al., 2017; Sun et al., 2018). 

Moreover, emphasizing the regions of interest (Wang et al., 2017; Zhao et al., 2018b) or 

streamlining picture annotation by background reduction, foreground pixel extraction, and image 

denoising enhancement (Qin et al., 2016; Siddiqui et al., 2017; Zhao et al., 2018b) might 

facilitate the learning process. 

Additionally, some researchers have utilized pre-trained deep learning models to classify fish 

directly, thereby avoiding the necessity of collecting extensive annotated data to address the 

constraints provided by the lack of such data (Ifty et al., 2023). This technique is mostly suitable 

for theoretical algorithm research because of its several limitations, including negative transfer 

(Pan & Yang 2010), challenges in learning from holistic pictures (Sun et al., 2019; Sazzad et 

al., 2023), and difficulties in satisfactory implementation for specific applications. 

3.4.2 The Algorithm  

1. Models. A multitude of CNN models remains the most prevalent from a technical standpoint 

(29 publications, 71%). Nevertheless, two of the analyzed studies utilize a GAN, three an RNN, 

two an LSTM, two a CNN combined with an LSTM, and two a DBN alongside YOLO, 

respectively. It is known that some CNN models work with output-layer classifiers, like Softmax 
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(Naddaf-Sh et al., 2018; Zhao et al., 2018b) or SVM mixed with Softmax (Qin et al., 2016; 

Sun et al., 2018). 

2. Structures. TensorFlow and Caffe are the preeminent frameworks in use. Caffe has a model 

that has already been trained and can be easily improved through transfer learning. This may be 

one reason why it is so widely used (Bahrampour et al., 2015). Combining deep learning with 

transfer learning reduces the need for a lot of data and saves a lot of training time. This is useful 

for both business and experimental research (Ifty et al.,2023b Ashakin, et al., 2024). Numerous 

diverse deep learning frameworks and datasets are readily accessible for client utilization. The 

PyTorch framework has been extensively utilized in recent literature, particularly because of its 

strong support for graphics processing units (GPUs) (Ketkar 2017; Liu et al., 2019). A lot of the 

research in this paper (9/41) uses transfer learning, which is the use of existing knowledge from 

similar tasks or domains to make model learning more efficient (Siddiqui et al., 2017; Levy et 

al., 2018; Sun et al., 2018). The most prevalent transfer learning approach is utilizing pretrained 

deep learning models that have been trained on analogous datasets with different categories. 

Afterwards, Lu et al. (2015) adapt these models to tackle specific issues and datasets. The network 

is initially trained with the labeled dataset from the source job. Subsequently, the model's training 

parameters are implemented for the designated tasks (Oquab et al., 2014; Sun et al., 2018; 

Sazzad et al., 2024). 

3. Model inputs, the predominant inputs for the model are images, while several studies use fish 

vocalizations and water quality metrics (34, 83%). This case illustrates the significant advantage 

that deep learning offers in data processing, especially in image processing. The inputs include 

public datasets like ImageNet, Fish4Knowledge (F4K), and fish datasets from Croatia and 

Queensland University of Technology (QUT). Supplementary data sets comprise information 

collected and produced in situ or obtained from internet search engines such as Google (Meng et 

al., 2018; Naddaf-Sh et al., 2018). Using optical sensors, machine vision, and deep learning 

systems together could lead to faster, cheaper, and less invasive ways to check the quality of 

aquaculture products both in situ and after they have been harvested (Saberioon et al., 2017). 

Nonetheless, these data sets typically encompass substantial amounts of information, irrespective 

of their format, whether it is text, audio, or image/video data (Begum et al., 2022; Rahman et 

al., 2024). When there is minimal differentiation between adjacent classes or when the task at 

hand is challenging, extensive datasets are essential. 

4. Results of the model, the categorization models yield between four and sixteen distinct classes. 

One research study examines images of sixteen distinct species of fish, and another analyzes 

audio recordings of four different fish species. Thirteen papers focused on identifying live fish, 

with results related to both fish and non-fish; seven papers looked at size or biomass; two papers 

measured how much fish ate; six papers predicted water quality; and five papers looked at 

behavior. The parameters for identification, classification, and biomass calculation derived from 

these classification models are, however, somewhat confusing from a technical perspective. All 

models in these papers possess identical input and output classes. The model selects the class 
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with the highest output probability for each input as the projected class. Each output comprises a 

collection of probabilities indicating the likelihood of each input belonging to each class. 

3.5 Comprehensive Performance and Evaluation Measurements 

3.5.1 Performance Evaluation Measurements 

Table 1 includes numerous indices used in the literature to evaluate model performance. Prevalent 

machine learning assessment measures such as accuracy and precision are employed in most 

identification and classification research (Qin et al., 2016; Siddiqui et al., 2017). Metrics such 

as the miss ratio (MR) are utilized in monitoring behavioral trajectories (Wang et al., 2017; Xu 

& Cheng, 2017). Additional metrics such as the mean absolute percentage error (MAPE) and 

root mean square error (RMSE) are utilized for forecasting water quality (Liu et al., 2019). 

Moreover, when high real-time performance is required, a program's execution speed is a critical 

performance indicator (Zhou et al., 2017a; Villon et al., 2018). Evaluating models predicated 

on a solitary parameter lacks scientific rigor, as various studies utilize distinct models, input data, 

hardware configurations, and parameters (Tripathi & Maktedar, 2019). Generally, most studies 

utilizing accuracy as a performance evaluation parameter indicate results over 90%, with some 

nearing 100% (Romero-Ferrero et al., 2019; Banan et al., 2020), implying the efficacy of these 

techniques. The advantages of deep learning models are evidenced by the highest results recorded 

in research utilizing precision and recall as evaluation metrics, achieving 99.68% and 99.45%, 

respectively. 

3.5.2 Performance Comparisons with Alternative Methods 

The examination of parallels between deep learning and other contemporary approaches is 

essential. We have developed seven deep learning models using audio and water quality data, but 

most deep learning approaches focus on image analysis. These findings indicate that deep 

learning can handle more than just photos in intelligent aquaculture. A deep learning model is 

only superior to other comparison models when utilized for the same task and dataset. 

Table 1 DL models Performance evaluation indexes 

 

Performance 

evaluation index 

Description 

 

Accurateness Accurateness is the proportion of the number of properly expected fish to 

the total number of predicted samples  

Accuracy In the ground truth, the proportion of appropriately identified fish 

Memory In the total identified objects, the proportion of appropriately identified 

fish 

Speed Algorithm running time 

Connection 

overunion (COU) 

The ideal scenario is complete overlap. COU is the intersection ratio 

between applicant area and ground truth area.  

Incorrect positive 
rate (IPR) 

IPR is the ratio of negative instances divided into positive classes to all 
negative instances 

Mean squared The mean squared error is the expected value of the square of the 
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error (MSE) difference between the parameter estimate and the true value 

Average ratio of 

variation 

The standard deviation divided by the mean. The degree of dispersion 

between two sets of data is reflected in the average ratio of variation. 

Primarily traced 

paths 

Proportion of ground truth that is accurately tracked for longer than 80% 

of the time. Greater values are preferable. 

Trajectories that 

were mostly lost  

% of ground truth cases that were accurately tracked for less than 20% of 

their total length. Smaller values are preferable. 

Pieces Percentage of trajectories that were accurately tracked at more than 20% 

of their length but less than 80% 

Switch of ID A resulting trajectory's average total number of times it swaps its 

matching ground truth identity with another trajectory is smaller the 

better. 

Ratio of mis The proportion of fish that are not shown in every frame. 

The ratio of errors Percentage of fish that were incorrectly identified across all frames. 

Error root mean 

square 

The square root of mean square error is the error root mean square. 

 

CNN models are 18.5% more accurate than SVM models at identifying fish (Qin et al., 2016), 

41.13% more accurate than Gabor filters and similar feature extraction methods, and 19.54% 

more accurate than manual extraction and linear discriminant analysis (LDA) (Sun et al., 2018). 

Moreover, it has been established that a CNN model surpasses id Tracker (Wang et al., 2017). 

The accuracy of a CNN model was shown to be superior (95.7%); (Villon et al., 2018; 

Chowdhury et al., 2022; Hasan et al., 2024) compared to that of human experts (89.3%). In 

Moen et al. (2018), a convolutional neural network surpassed human experts in assessing the age 

of the fish population. The acquired mean coefficient of variation (CV) of 8.89% is markedly 

lower than the stated mean CV of human readings. The accessibility of data sets in these places, 

along with the unique characteristics of fish and other contextual aspects, may be the underlying 

reason for this. When it came to putting feed intensity into groups, a CNN model did 6.25% better 

than a backpropagation neural network (BPNN). In comparison to traditional manual feature 

extraction methods such as FIFFB and SIFFB, the evaluation metrics of the CNN model showed 

a shown enhancement (Zhou et al., 2017b; Zhou et al., 2019). Also, the water quality prediction 

results show that LSTM and attention-based RNN models are more accurate than BPNN models, 

Holt-Winters forecasting, and support vector regression (SVR) algorithms that use either a linear 

function kernel (SVR-linear) or a radial basis function kernel (SVR-RBF) (Ta & Wei, 2018; Liu 

et al., 2019). Moreover, in comparison to CNNs, GAN models often exhibit better results in fish 

recognition (Zhao et al., 2018b). 

3.6 Challenges and Prospective Pathways  

3.6.1 Technical Difficulties  

Despite its numerous advantages, the use of deep learning in aquaculture encounters certain 

technological constraints. One of the primary obstacles is the necessity for wide, substantial, and 

high-quality datasets. Building strong AI models needs a lot of labeled data. But collecting and 
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labeling data for fish-related information, like species classification, biomass estimation, and 

behavioral monitoring, is hard work that takes a lot of time (Zhou et al., 2018b). Also, being 

underwater can be hard because of things like poor vision, changing lighting, and cloudy water, 

all of which could make AI-based analysis of photos, videos, and sensor data less accurate (Qin 

et al., 2016). The primary concern is model generalization and transferability. Deep learning 

models work better in controlled experiments, but they have trouble with things that are hard to 

predict in the real world, like different types of aquatic habitats, a lot of different kinds of animals, 

and changes in the environment throughout the year (Sun et al., 2018, Moniruzzaman et al., 

2023). The constraints of improved technology provide a challenge due to the large computing 

resources required for deep learning-based fish farming systems (Saberioon et al., 2017; Mithun 

et al., 2024). 

3.6.2 Socioeconomic and Regulatory Challenges  

The use of AI-driven deep learning technologies in aquaculture is not only a technological 

endeavor; it is also governed by economic and legal limitations. The substantial primary financial 

expenses associated with AI implementation provide a significant hurdle, particularly for small 

and medium-sized fish farms that have limited financial resources or technical knowledge to 

embrace AI-based solutions (Kuddus et al., 2022; Ifty et al., 2023). From a regulatory 

standpoint, data safety, security, and ethical considerations are growing concerns. The 

aggregation and use of aquaculture data raise inquiries regarding data ownership and security, 

along with possible hazards of proprietary information exploitation (Zhuang et al., 2019). 

Furthermore, the regulatory frameworks for AI-driven aquaculture are inadequately defined, 

resulting in ambiguities about compliance requirements and constraints in legal enforcement 

(Pan & Yang, 2010). Another critical reason is the reluctance of conventional fish farmers to 

embrace AI-driven technology, especially deep learning. Many aquaculture practitioners persist 

in utilizing traditional methods due to insufficient knowledge or a lack of understanding regarding 

the benefits of artificial intelligence. To promote the extensive use of AI-driven aquaculture 

solutions, training and workshop programs are essential to close this knowledge gap and enable 

effective implementation (Banan et al., 2020; Begum et al., 2023b). 

3.7 Future Trends Advancements in AI and Policy Integration  

Several steps will influence the development of deep learning in aquaculture, including the 

improvement of AI models for enhanced efficiency and accessibility. Advancements in federated 

learning and edge computing may provide real-time AI processing with reduced computer 

demands, making deep learning applications more viable for small-scale or minor aquaculture 

operations (Moosavi-Dezfooli et al., 2016). Another significant trend is the increased utilization 

of AI in conjunction with IoT and robots. To concurrently monitor environmental variables and 

fish behavior, intelligent aquaculture systems such as AI-driven sensors and automated feeding 

mechanisms will become more essential (Hu et al., 2015, Begum et al., 2023a). However, the 

integration of blockchain technology with AI can enhance transparency and traceability in the 

aquaculture supply chain, hence assuring food safety and regulatory compliance (Fahad et al., 
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2022; Ashakin et al., 2024). By recognizing these issues and obstacles associated with 

harnessing future AI developments, deep learning technologies can significantly enhance the 

transition of fish farming into a more sustainable, efficient, and productive sector.  

4. Conclusion  

Deep learning (DL) has become a revolutionary tool in contemporary aquaculture, tackling 

significant difficulties through automated processes, machine learning, and real-time monitoring. 

This review focuses on how deep learning-based solutions, such as Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks 

(GANs), can greatly improve monitoring fish health, species classification, feeding decisions, 

biomass estimation, and water quality prediction. The use of artificial intelligence in aquaculture 

enhances resource efficiency, reduces environmental impact, and bolsters overall sustainability. 

There has been a lot of progress in using deep learning in aquaculture, but there are still some 

problems. For example, it takes a lot of processing power, it's hard to find high-quality datasets, 

and the models don't always work well in different aquatic ecosystems. Moreover, economic and 

legal obstacles, especially for small-scale aquaculture operations, impede broad adoption. To 

solve these issues, researchers, businesspeople, and policymakers need to work together across 

disciplines to create standardized AI frameworks, improve data-gathering methods, and make 

deep learning models easier to understand. Subsequent studies need to concentrate on the 

amalgamation of deep learning with Internet of Things (IoT) frameworks, edge computing, and 

blockchain technologies to improve scalability and data security. Federated learning 

methodologies may diminish computing expenses and facilitate collaborative AI training among 

several aquaculture enterprises. Ongoing breakthroughs in AI and machine learning position deep 

learning to transform the aquaculture business by enhancing efficiency, sustainability, and 

resilience in global fish farming techniques. 
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